
大数据的最终受益者是消费者
浪潮集团董事长孙丕恕认为,传统产业的升级与延续要依靠互联网技术改变固有思维模式,而互联网公司也需要凭借自身优势尽可能与产业链结合。双向的互联网化最终将完成对传统产业的改造。
开放政府数据会很有用
新京报:面对如今互联网+一切的浪潮,你认为哪个行业的互联网+最有前途、哪个行业最不适合与互联网结合?
孙丕恕:我认为最有前途的行业是互联网+政务。
未来传统产业的互联网化和互联网公司的传统产业化将同时进行。一方面,传统产业要生存必须以互联网思维来改变过去的模式;另一方面,控制了商业模式的互联网公司将凭借自身的主导优势尽可能地覆盖产业链上更多的环节。双向的互联网化最终将完成对传统产业的改造。因此,可以说,没有不适合与互联网结合的行业,只有结合的密切程度的区别。
新京报:你连续两年两会建议政府能够数据开放,你看到了政府数据的哪些亮点?如果拿到这些数据,你会用做哪些用途?
孙丕恕:政府数据,比如说公安机构的人口信息,真实性、有效性、完整性、可用性都比较强,而且数据量大。利用政府开放的数据与互联网数据结合,可以开发出很多有利于国计民生的应用,比如可用于社会治理、公共安全、企业征信系统等领域。
像浪潮前几年为山东公安做的“警务千度”,就是利用大数据的警务搜索平台,它整合了公安、交通等多个政府部门的数据,实现对海量警务信息的横向关联、毫秒查询、批量比对,实现了人、案、物、信息的无缝对接和立体展现,成为山东省公安厅追踪逃犯等警务工作的“千里眼”、“顺风耳”。
云计算已成为不可阻挡的趋势
新京报:许多知名企业发生过用户数据外泄等事件,使得云计算产业的安全性和互联网的可信任度在全球范围引起了质疑。
孙丕恕:从目前的发展来看,云计算已成为不可阻挡的趋势。同任何新生事物一样,云计算在发展过程中,会遇到这样那样的问题。但是技术演进的脚步不会停止,相应的问题也会有相关的技术去解决。
新京报:云计算和大数据能为普通人的生活带来什么改变?
孙丕恕:事实上,云计算可以改变各个行业。不管是医疗、教育、工商、金融还是餐饮、旅游、零售等,这些行业受益于云计算和大数据,但最终受益的还是每一个消费者。其实我们几乎每天都在享受云计算、大数据带来的实惠,以旅游为例,旅游黄金周引发的道路交通拥堵、厕所等不好找的情况,这时如果有一个平台,能实时显示交通状况、景区服务点的人流等信息,人们能一目了然地了解相关信息,方便安排行程,同时也利于管理者对景区进行管理,更好服务游人。
用大数据分析规范互联网金融
新京报:此前有不少人反映,对于网页上根据自己的搜索和购买记录显示的广告非常反感,这种商业模式能否继续改进?一个人是否可以拒绝分享关于自己的一切数据?
孙丕恕:目前这种通过大数据进行行为习惯分析来推送广告,其实只是大数据的一种低级应用,对其中出现的不良现象,相信政府会通过立法进一步规范。
云计算、大数据真正的商业模式是在云计算的基础上,通过政府开放数据和整合互联网公开数据进行创新应用,发展新的业态。
在当今社会,拒绝分享关于自己的一切数据是不可能的。因为要享受服务,就会把个人基本信息分享给相关机构,比如最基本的服务,就医、购房等。
新京报:现在的互联网金融发展非常迅速,但跑路的互联网金融公司也非常多,其中的痛点就是风控和规范,大数据和云计算对互联网金融会有什么帮助?
孙丕恕:互联网金融企业的金融活动通常是网上进行的,这对于政府利用大数据分析对其监管提供了基础。
数据信用平台在规范互联网金融企业方面,可以做的有很多。比如浪潮曾经开发过一款以企业信用评估为主线的数据信用平台,通过整合政府数据和互联网数据开发的应用平台,能够在识别企业信用状况的基础上提供风险评估预警,方便用户查找企业信用等级,决定要不要购买其产品和服务,还能为政府监管企业信用情况提供数据标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23