
大数据营销:“万灵药”还是“大忽悠”
互联网正在触发一场营销革命,甚至有人认为大数据的出现是自工业革命以来营销发生的最为深刻的变革之一,这种变革的动力来自于科技、市场,更来自于消费者。如果说70后甚至80后只能算得上是互联网的“新移民”,那么90后和00后们则是标准的互联网“原住民”,只有更好地了解他们的需求、欲望以及他们的购买倾向,才能把握住营销的未来。
为什么是吴莫愁?
互联网已经改变了人们工作生活的每一处、每一刻,当然也包括营销。一个企业通过传统方式选择品牌代言人,需要做大量的市场调研与客户分析,抽样、问卷、电话、面访、细分……往往要耗费大量的时间精力、物力财力之后才能找到那个“意中人”,但互联网公司却可以通过大数据分析“轻松”地告诉你一个相同的答案。
“搜索引擎是一个大数据金矿,海量的数据库中能够储存网民的真实需求,这个金矿对于广告主洞察消费者有着重要的价值,通过对这些海量数据的洞察分析,可以为品牌营销提供良好的技术支撑。”百度公司副总裁曾良告诉《中国经济周刊》。
曾良表示,通过对百度指数、百度风云榜等数据得知,吴莫愁的关注度和知名度非常高,甚至超越了王菲等大牌。尽管吴莫愁一出道便颇受争议,但从百度大数据来分析,这些争议只是来自于不同观众对于她不同的感觉,而不是来自于负面新闻或者绯闻事件。这也说明,吴莫愁在具有超高关注度的同时,也具有相当高的美誉度,并且个性鲜明、带有很强的新生代正能量,对于消费人群为年轻人的品牌和产品来说,她是一个非常好的选择。
曾良还向记者举了另外一个例子,他曾经通过搜索引擎提供的大数据为某品牌汽车推荐了一位代言人,因为搜索这款车型及其竞争车型的人,有相当多的人同时也在搜索这位明星,而且从搜索行为上来看,是非常喜爱和认可这位明星的。这个品牌汽车的负责人听到之后非常惊讶,因为他们之前确实有请过专业的调研公司和营销机构做过分析,得出的结论是同一个明星。
宝洁是全球最大的广告主,而中国是宝洁全球第二大的市场,宝洁公司大中华区品牌运营总裁谢冰表示,“过去我们用得更多的是问卷、电话等传统抽样调研的方式,如今大数据时代的到来将为‘消费者洞察’这个古老的命题带来无限的想象力和可能性。”
“直觉不靠谱,大数据才靠谱。”曾良说。
营销官们尚未做好准备?
尽管大数据几乎成为年度流行语,在各种各样的营销论坛上,大数据更是必谈的话题。但是,真正理解和知道如何利用大数据的CMO(首席营销官)并不多。
被称为“整合营销之父”的世界级营销大师唐·舒尔茨(Don E.Schultz)前不久到访了中国,他告诉记者:近八成的企业管理者面对大数据表示茫然,即使是世界最顶级企业的首席营销官们,大多数也表示对于如何使用大数据还没有准备好。
“现在,信息数量爆炸式增长,媒体的形式多种多样,消费者获得信息的方式也很多,消费者有多种机会获得多种多样的数据。过去这些信息掌握在营销人员手里,现在发生了很大的变化,所有的信息随时可得,消费者可以得到各种各样的信息。”舒尔茨告诉《中国经济周刊》。
“过去这些营销人员并没有这样的复杂数据,但现在,数据量呈现几何基数式的增长,信息过剩导致价值信息发掘难度增大。面临这么多的数据他们也觉得不知道如何做。世界各国都是在摸着石头过河,大家一起在不断的探索。”他说。
唐·舒尔茨教授对中国在大数据营销上的表现颇为兴奋,“在互联网营销方面中国确实在很多方面都大大超过美国,比如说双十一,网上当天交易额达到57亿美元,比美国销售量最多的一天‘黑色星期五’多三倍。美国用手机主要打电话,而中国很多人用来获得数据。”他说。
呼唤成熟的评价体系
营销从诞生之日起就被认为是“以客户为导向”的,这几乎与互联网的精神不谋而合。但是,如何才能真正把互联网思维运用到营销之中呢?这似乎又回到了那个古老的话题——如何找到消费者的需求,然后满足它。
曾良举了一个玉兰油的例子。“我们在2011年的时候,对玉兰油和其他一些化妆品品牌做了一些搜索关键词的研究,“我们发现一组非常有意思的数据,搜索玉兰油的用户中有25%接着会搜索‘适用年龄’,而其他的类似品牌并没有这个特点。这说明一个问题:很多消费者不晓得玉兰油到底适用什么年龄,这个品牌定位有一点不清,而这个问题会影响到玉兰油的市场销路。”他说。
当百度将这个问题反馈给宝洁之后,宝洁快速推出一个新的包装产品——“玉兰油25岁装”,很明确地把这个产品定位为适用于25岁左右人群的产品,目前“玉兰油25岁装”是玉兰油最畅销的人气单品。
当然,大数据也并不是一剂万灵药,搞不好就变成了“大数据忽悠”。“对于大数据营销的效果也尚没有一套成熟、客观、公正的评价体系,这也是未来值得探讨的话题。但是,未来营销一定会因为大数据而发生重大变化,比如个性化广告和个性化产品的对接。” 财讯传媒集团首席战略官段永朝告诉《中国经济周刊》。
另外,段永朝也提醒,大数据营销的另外一个掣肘点是数据获得和隐私保护的边界不清,这会给大数据营销带来一些不确定性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26