
大数据应用于人力 预测性劳动力分析真的有用么
最近,人力资源专家、人力资源技术会议之父—Bill Kutik写了一篇文章《预测分析炒作》。在这篇文章中,他引用星座研究分析师Holger Mueller的说辞“这归结于当应用于大量有着不同数据视野的顾客时,这些模型是否真的有用。”
因此,当许多人力资源软件供应商光说说要预测“雇员离职风险”时,他们有多少人可以证明他们能说到做到以及他们的预测真的有用,你怎么能确保一个供应商所宣称的可以预测员工留任风险是有效的?你应当寻找什么?
自从2009年的经济衰退巅峰以来,美国每个职业空缺所对应的失业人口数量在稳定的下降,现在已经回到了衰退前的水平。再加上,美国劳工部的统计数据显示,企业不仅越来越难招到人,也越来越难留住人才。
因此,员工保留自然而然成为了大多数人力资源部门的关键任务。为了可以量化人员损耗的影响,许多人尝试把离职和商业影响联系起来。一份分析了48个独立研究的综合性研究中表明,离职真的对财务业绩、客户服务、劳动生产率和安全产出有影响。
更多的人尝试去通过估计直接成本和间接成本来量化离职的的影响。尽管分享了许多的观点,这个研究结果中关于成本和人员损耗的联系仍然有很大程度上的不同。因为考虑到的因素和作用也是多样化的。一个完整的核算需要超越雇佣和培训的范畴,包括分离,生产力和失去的知识。
在一个有着5000名免付加班费员工(例如,行政管理人员,经理主管人员,专业性的员工,计算机专业人员以及销售人员)的公司,有着10%的自愿离职流动率(比2014年行业中的额平均自愿离职率少了超过1%),尽管保守估计每年不必要的离职率可以转化为3000万美元的替代成本。
盈亏的底线可以被好的开支计划所改变,但是滥用的保留员工策略,例如,人力资源或者是经理们用来防止辞职所采用的方法:加薪,奖金或者是升职。当这些策略没有硬数据来支撑他们的话,结果将会十分有限,更糟糕的是,这些钱可能不必要的被用来挽留那些实际上并没有离职风险的人。36大数据
正如在文章中描述的那样,ConAGra食品公司创建了一个人力资源分析程序,使用数据来引导挽留策略的实施显示出了“地毯式轰炸和激光制导弹的区别”。人力资源将它的注意力聚焦并将钱花费到最有用的地方,而不是在整个公司采用挽留策略。如果你可以使用预测分析来准确的识别那些有离职风险的员工,尤其是表现出色的员工以及是关键角色的人,那么你就可以在保证生产力和绩效提升的同时,避免这些成本。在这种情况下,关键字是正确的。
首先,使用任何的预测模型,你需要有一种方法来证明你的预测是有效的。维西尔的数据科学家认定,一个分析若要有效,最少需要分析2至3年的数据(越多越好),它就像在某一时刻,父母对他们的孩子说的那样“你不去试一下,你怎么知道你不喜欢它呢?”或者在我们这一情形下,如果你没有做一个对于真实结果来说有效的预测,你怎么就知道这一预测是有用的呢?
第二,人们做决策的模式不能被归结为市场营销人员这么多年以来一直尝试去发掘的简单因素。它是“有着情感的数据”,并且为了发掘其内在模式需要去展搜寻尽可能多种类的信息来源。就像淘金一样,你搜索的范围越广,你越有可能找到隐藏的金块,也就像预测分析的洞察力一样。
第三,预测的准确性取决于用来建造模型的数据,例如,如果一个模型是基于一个公司的内在因素建立的,那么它就不一定适用于第二个公司。更具挑战的是,在同一个公司的一年和下一年相比之下,对于同一个模型也会同样发生上述情形。使用的方法应该考虑到这一动态性。
问题是如今大多数的“离职风险”预测分析能力都是在他们的初级阶段—他们都没有使用足够的数据来源在足够长的时间中被足够多的公司使用到足够多的员工身上。
验证一个“离职风险”预测分析技术
在维西尔,我们希望把我们自己的“离职风险”预测分析进行测试,为了做这个测试,我们把我们所有所知的关于预测分析的情况和匿名的数据放到我们的云平台上,一步一步的应用我们的“离职风险”预测分析技术。在做这的时候,我们发现维西尔在预测谁会在接下来的三个月中辞职时比猜测和直觉要精确8倍,如果你关注前100名有“离职风险”的员工时,会精确10倍。
通过在员工身上应用一段时间我们的机器学习,我们可以赋值一个“离职风险”分数并将它们从高到低进行排列。这些计算都是动态和即时的,因此当一个人力资源分析师,商业伙伴或者领导询问在一个特别的员工子群体(例如,指定了一个角色、情景、任期以及绩效水平)中谁有“离职风险”时,系统会基于最近适用于用户的数据自动的提供相关结果。
手里持有这些信息,人力资源可以采取行动来应对最脆弱的群体或者是那些准备离职的人。36大数据
尽管有炒作的嫌疑,预测分析将不会取代人类的干预:他们将不会告诉你一个清晰的行动方案,尤其是在处理那些有情感的数据时。
预测分析比关于谁将离职所包含的东西更多,它还包括为什么他们要离职。在许多放面,预测为什么离职比指名某个人更加有价值,因为它通过直击原因的根源来使人力资源采取深切的、精准的,长期的行动来降低离职率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22