
大数据给网络运营带来了什么
大数据分析现在是炒作焦点,很多企业都喜欢这样的想法,即通过对海量结构化、非结构化和部分结构化数据进行高级分析来发现意想不到的可操作业务洞察力。但所有这些数据处理是有代价的,特别是,这些数据会给网络带来影响。
大数据和大数据对网络运营影响的问题并不适合心脏虚弱的人。我们都知道,大数据工具并不成熟,并且,知道如何使用它们的人也供不应求。但先抛开这个 问题不谈,让我们来谈谈大数据给IT基础设施和运营带来的新负担。通过大数据技术,现在企业都开始想办法处理大量数据,而这些数据本来可能被抛弃或置之不 管。
企业管理协会(EMA)对北美150家部署大数据的企业进行了调查,以了解大数据对IT基础设施管理的影响。该报告《大数据对IT基础设施和管理的 影响》研究了哪些IT方面最受大数据的影响,该报告还探讨了IT企业如何使用这些相同的大数据技术来改进IT规划和运营。也许并不奇怪的是,该研究发现, 网络和网络管理团队比任何人都更深刻地感受到大数据的影响。
大数据增加网络流量,迫使工程师作出调整
我们的研究发现,45%部署大数据的企业发现网络流量增加,这主要是因为对数据的收集。我们还发现,46%的这些公司发现因为对这些大数据的备份而让网络流量增加。而IT基础设施唯一受到大数据影响的是存储,这并不奇怪,因为大数据主要是关于对海量数据的收集和存储。
随着企业扩展对大数据技术的使用,网络和大数据影响问题变得更加突出。例如,EMA将在生产环境部署有6个或以上大数据项目的企业评为“高级”大数据用户。在这些公司中,55%看到来自数据收集更多的网络流量,61%则报告来自大数据备份的更多流量。
基于大数据造成的网络流量激增,EMA询问这些企业其网络团队如何应对这些情况。我们的研究发现在IT企业内所有基础设施管理人员中,网络管理人员 在调整其基础设施规划和设计做法以应对大数据。超过半数的网络管理人员称他们正在制定计划来满足大数据的需求,从改进容量管理做法到扩展和升级网络基础设 施来支持流量增加。特别是,这些管理人员需要设定大数据流量基准;这些流量只会不断增长,所以工程师需要理解这些趋势,并相应地规划容量。
与此同时,半数网络团队称大数据迫使他们调整其日常运营做法。这些网络管理人员需要调整其性能监控和故障排查工具以及流程,这都是因为大数据网络流量的增加以及突发性质。
网络管理人员让大数据为其所用
在探讨大数据对基础设施的影响后,EMA研究了IT企业如何让大数据为其所用。我们发现很多研究参与者在输出IT监测数据到大数据环境以进行收集和分析,于是,我们询问这些企业对这些IT监测数据的高级分析在改进哪些管理做法。
EMA发现,57%在使用大数据分析来支持网络容量规划,53%在使用它来支持网络可用性和性能监控。最后,在故障排查任务中,35%在使用大数据 隔离网络中的基础设施问题。如上所述,该研究发现,网络管理人员在调整其规划和运营做法以应对大数据给网络带来的影响。现在,我们发现,很多这些网络管理 人员开始运用大数据分析以加强规划和运营。
另外,对IT监测数据的大数据分析具有很大的潜力。EMA不仅观察到IT管理做法的变化,而且还衡量了这给IT企业带来的好处。45%的IT企业告 诉我们,大数据分析让他们可以积极防御基础设施问题;45%报告称他们可更有效地管理IT运营费用。此外,46%称他们通过大数据分析实现更有效的基础设 施容量规划。最后,41%称对IT监测数据的大数据分析帮助他们更好地让IT部门配合业务部门。
这项EMA研究分析了大数据对IT基础设施和IT管理所有方面带来的影响和好处,但很显然,网络管理团队应该特别注意大数据影响问题。大数据对基础设施的影响是真实的,并将随着时间的推移而增加。与此同时,网络工程师和管理人员也可以利用大数据分析来改进他们自己的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23