
数据分析系列篇:互联网金融数据分析应用
互联网金融在国内发展也才2年多的时间,从货币基金到P2P到众筹到股票基金,从传统ATM和手机银行短信银行,感慨这个互联网金融的到来,让我们有更多的信息渠道可以来了解金额。
还有像越女读财介绍的高暴利的钱宝网、MMM、百川币这些,如果没有互联网,相信他们也很难发展的起来。
主要介绍下互联网金融行业的相关公司主要应用的数据分析有哪些,这个区别于之前介绍的在电商、零售中的数据分析应用,零售中得数据分析解决的更多是卖得问题,而金融中更多涉及到得是风险的问题。
好了,不废话。直接上干货。
互联网金融中的数据分析主要体现在个人征信、贷款授信、风险控制、洗钱套现识别、保险定价和云计算平台、量化投资这些应用。
1.个人征信
目前国内外的个人征信这块的发展如下:
一、美国的征信业务发展现状
··········1)FICO和三大征信机构
··········2)ZestFiance
··········3)Credit Karma及其他
二、中国的征信业务发展概况
··········1)聚信立
··········2)安融征信
··········3)快查
··········4)闪银奇异
··········5)京东金融
··········6)腾讯(腾讯信用)——腾讯征信
··········7)阿里(蚂蚁金服)——芝麻信用
··········8)平安(前海征信)
美国征信:
其中的数据应用
1)FICO和三大征信机构
3)Credit Karma及其他
一个免费查FICO分(TransUnion和Equifax)和简版信用报告的平台(美国政府规定,三大征信局每年为用户提供仅一次免费查询信用记录的机会)。并且用户可以在平台上查看自己的各项财务状况,根据用户的信用信息及个人金融信息推荐合适的信用卡、更优惠的车贷和房贷等信贷产品,当会员购买了金融机构的产品后,机构变付费给Credit Karma。产品运营模式: 中国征信:
国内的个人征信方面,芝麻信用是长的最像FICO的。
2.风险控制
风险控制这块主要包括用户行为识别比如盗卡盗号、洗钱套现等
3.贷款授信
传统的贷款方式
互联网金融的贷款方式:
1)阿里小贷
2)宜人贷
宜人贷的数据源包括:
信用卡数据
淘宝天猫京东购买数据
运营商的通话记录
爬虫数据
生态伙伴第三方数据
可能很多人会问我说,因为时间关系,没有办法我只能说做一个非常非常简单的展示,传统的金融机构,大家也做模型,做算法很多诸如此类的数据挖掘,传统的数据模型,比如说,他可能会放几十个变量,或者撑死了放几百个变量,我们的方法不一样,我的有几十万个或者更多的变量,传统的模型里头,非常强调说所有的这些特征,要是可以解释的。所以他需要非常非常强的特征。在我的这个模型里头,在我们这个平台的模型里头,对于我来讲,所有的数据,都是信用数据。当中交易数据,流水数据这些数据大家可以想象到,其他很多的数据,比如你的搜搜数据,网上的很多其他点击数据也是特征。如果这些特征被吸收的话,可能非常弱的特征没有关系,最后我能做出不管是信用,还是反欺诈,我后面有一堆模型在这边,我做的手段跟传统机构不一样的。
4.保险定价
保险定价这块主要的场景包括车险的定价、运费险。
车险:其实根据车主的日常行车路线、里程、行车习惯、出险记录、职业、年龄、性别,可以给出非常不同的定价。比如一个开中级车,每天固定路线往返几公里通勤的熟练女白领车主,和一个开同样车型每天在珠三角或者长三角跑生意的中年暴躁小老板车主,假设后者出险概率是前者的3倍,那么完全可以定3倍于前者的价格(商业部分)。对于保险公司,前者才是优质客户,后者做了生意也是赔钱货,不如赶到竞争对手那里去。
运费险:
5.云计算
6.量化投资
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29