京公网安备 11010802034615号
经营许可证编号:京B2-20210330
要是大数据能搞定 还要智慧数据干什么?
提到大数据,难免要说到下面这几个V:规模volume、速度velocity、种类variety、真实性veracity和价值value。
仔细关照这些特点,会发现两个问题。数据的规模、速度和种类指的是大数据生成过程和如何捕捉和存储数据,真实性和价值指的是数据的质量和有用性。数据管理对很多公司来说是一个主要的挑战,虽然小数据也在受到数据质量和管理问题的困扰。
另外,数字世界正在生成来自不同数据源的新数据集,其中多数来自网络,包含结构化数据和非结构化数据。
为了应对大数据难题,很多公司只是简单的关注数据数量、种类和速度,但其实数据噪声的问题也很严峻,很多信息和元数据对企业来说没有,或者很少有价值。
智慧数据(真实性和价值)的目的就是要过滤噪声,使用有价值的数据,这可以有效地帮助企业解决业务难题。
企业应用了智慧数据,就可以说数据并不是越大越好。
对于一个预测模型来说,简单的随机样本是否足够?
查询五百万列和查询十亿列对预测分析模型的准确性来说有什么边际影响?从统计学角度来讲,边际影响完全可以忽略。
那么,大数据如何变成智慧数据呢?
没有一成不变的公式,但你必须要更好地理解数据。分析数据的质量不止能让公司变成数据驱动,也能让它变成创造力驱动。这就是大数据走向智慧数据的路径。
和数据打交道的人不是要对着一堆数据,猜想为什么有的数据有用,有的就没用,而是要将数据人性化,这样才能让数据说话。这是未来分析数据数量和质量的技巧。公司必须要让数据会说话,尽可能地消除偏见。
数据多还不够。问题的关键在于研究数据,比如数据是不是均匀而规律的?它能不能被轻松地提取和分析?数据的变化很多吗?有用的数据是不是蕴藏在其他不相关的信息里?
对数据的解释不应该是随机的,它应该指向明确的解决方案和可执行的任务。之后,还应该分析解释数据带来的价值。
只有在数据能够优化和自动化解决方案和解决问题时(数据驱动的决策制定),对数据的收集和探索才是有意义的。
例子有很多,比如网站只更改了按钮的颜色吗,就能带来更高的转化率。
因此,目标不应该仅限于把通过数据发生的各种行为连接在一起,去理解它们,更应该包括提升现有流程的性能,或者预测下一次成果。
这也就意味着焦点不应该是收集大规模数据,而应该把数据的环境都呈现出来。数据需要在固定的环境下进行理解和解读。比如,如果你不知道用户点击链接之后做了什么,只知道他点击了链接,那有什么用呢?
这意味着大数据已死吗?不完全是。理解和拥有完成的用户行为视图至关重要,从这一点上来说,大数据扮演着重要的角色。
如果跨交互渠道的实时用户行为的分析受到人口和地理因素的限制,那么大数据就不可丢弃。你应该让数据变大。不过,如果机器学习算法能够通过使用少量数据集给出产品推荐,那么为什么还要采用大数据呢?
数据科学并不一定意味着凡事都要靠大数据。数据科学是要我们知道什么时候用瑞士军刀,什么时候用电锯。
我们的目标应该是将企业文化从数据管理(管理各种各样的数据)向数据学习(利用数据背后的所有价值)转变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08