
数据分析师到底都在做些什么
我认为数据分析的基础是知有常无常,一般建议采取的措施是挑肥拣瘦,目标是以更少的成本获得同等收入,另外还有一点比较难得是识别机会。预测其实应该也算,但是预测大多牵扯到技术性多一点,这里只讲理念。
知有常无常,换句话说就是知道数据变化的时候,哪些是正常波动,哪些是非正常波动,趋势是怎样的。一般通过同比、环比等等,去判断是否处于可接受范围内的波动,如果是异常波动,则要判断异常波动的原因。一般异常波动的影响因素都是通过排除法查找,排除的项目是变动项目的影响因素,比如销售额=访客数*拍下率*拍下付款率*产品单价*单客件数,销售额变动就会从等号后面几个因素去找。再细分比如访客数下降,则要细分各访客来源数量上的变化,成交付款率往往是由顾客对产品满足需求程度以及产品(相对)价格的判定决定的,如果判断越明确,则这个值越大,价格较高会加重犹疑,但是有时候产品价格升高时拍下付款率升高,可能的原因是高价格对拍下阶段的顾客已经做了过滤,剩下的都是成交意愿较高的客户(这个是观察最近雾霾罗汉果购买的变化,应该是瞬时流量增长带来的相对不确定人群对拍下付款率的稀释)。拍下率一般与(相对)价格关联比较高,其他还有页面描述、活动、评价以及服务承诺之类,大量不精准流量会带来拍下率的下降,而不精准流量的剔除也会带来拍下率的升高,所以要具体分析判断。单客件数受活动刺激以及包邮比较厉害。好吧,扯远了。
知有常无常,有个“知”字,如何做到知呢?以前靠的是经验,即假定在相似情境下会产生类似的结果,或者事物按照相似的轨迹发展,人们会按照模糊的数据去断定未来,但是假定很多时候不成立,按照固有预期去走的人很多会失败。有数据,但是只是判断数据表面输入输出的关系去支持决策,其实跟经验没两样。我认为除了利用已有知识解释原因外,应该想办法对结果进行验证,因为解释很多时候都是基于常识的假设,未必正确,经过稳健的验证的知识进入“知”的范畴。凭空生出可靠地想法是比较难得,经常生出的就很牛叉,因为很能生啊。好吧,又扯远了,其实讲的就是解释未必对,应该经常针对现象提出解释,尽量对解释验证。
挑肥拣瘦,就是在资源有限的情况下,把资源投入有潜力或者块头大(潜在利润?份额大)的部分,而对潜力小或者肉薄的部分维持、削减设置剔掉。对有望长成大树的树苗多浇水上肥,直到他不怎么长,再选择其他合适树苗,对长不大的树放任不管甚至砍掉以免影响其他树的生长(阳光水肥的分配),大的树不会有大的生长,只是保持虫害的关注。其实还有个比喻,就是把浓的用水冲,直到平均溶度为止,再寻找下一个高浓度。对每一份的投入要考虑投入在各个部分产生的收益是否最大,从短期看如何,长期怎样?挑肥拣瘦,就是同等投入追求更高产出的过程。这一部分涉及到量化和度的问题。
识别机会就是比较创造性的活动了,一般人很难做到,因为出发点和受过的训练不一样,总之呢,是需要通过不断的商业训练以及知识补充完善决策的背景。
预测呢,很大程度上是量化哪个是肥的,哪个是瘦的,不扯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22