
大数据或是下个10至20年企业的核心竞争力
大数据市场的成熟不是短期的,它可能在未来的5年甚至10年之后,才能形成成熟的数据交易和数据交换市场,但在短期内,企业级的大数据应用会蓬勃发展,目前很多大企业已经先行了,他们意识到数据是重要的资产,认为能够把客户数据承载下来,并管理好,将是下个10至20年企业的核心竞争力!
作为新一代信息革命最热门的技术,大数据掀起了新一波IT投资和信息化建设的浪潮。越来越多的企业开始思考、探索和尝试用大数据的技术和手段,来提升营销、运营和生产的效率及效能。
大数据应用的关键,在于先进的创新模式。在保护用户隐私和数据安全情况下,要尽量让数据流动起来,如此才能创造高效的信息社会,让数据被使用并发挥价值,甚至还能二次发挥价值。
大数据技术更多的是处理企业非结构化的数据、非标准化的数据和企业Web的数据,以实时数据处理能力满足企业对客户的需求。现在,根据用户的行为轨迹实时预测该用户当前的偏好和需求,并实时将个性化的关联信息展示到用户面前,已成为大数据营销制胜之关键技术手段。
中国大数据市场还处在初级阶段,但增速迅猛,应用也很广泛,不管是云计算、物联网、智慧城市还是移动互联网都要与大数据扯上关系。但如何使大数据技术和应用落地?大数据管理平台是一个解决方案。大数据管理平台相当于建一个大数据工厂,应用是数据管理和数据工厂里的流水线,它们被赋予大数据计算的能力。做一个形象的比喻就是,不需要每个企业都去挖井才能喝水,大数据专业公司挖了一个大井,把水提供给企业。
很多人对大数据管理平台的应用心有余悸,认为大数据应用会暴露用户的隐私,其实这种担心是多余的,这个问题现在就能够解决。那些涉及隐私的数据,比如一个人的手机号、身份证号、地址等,都可以通过数据安全与层层数据加工隐藏起来。
目前国内很多地区都建立了大数据产业园区,但最大的问题是技术人才短缺。现在做大数据技术的公司很多,但做基础技术的顶尖人才很少。另外一个问题,就是做大数据平台的人很多,但平台上的内容却空洞无物,缺少真正实用的大数据应用。
实际上,大数据产业的下一个黄金十年,将是企业级的大数据基础技术开发。中国有几千万家的企业,这个需求非常大。然而大数据基础技术的开发,既要通用性非常好,又要可扩展性非常好,要做好非常不易,而且大数据基础技术赚钱慢,因而只有务实的心态,才能做好大数据产业。
未来,大数据产业会形成一个生态系统,在这个系统里有基础的技术,有大数据分析企业,有大数据应用企业,应用的行业分金融、营销、教育等,这是个非常大的产业。此外,还有大数据市场,即包括数据交换和数据交易的市场。目前贵阳已成立了一个大数据交易所,这是一个起点,有很多东西都亟待完善,例如数据定价、标准的制定等。
可以预见,大数据市场的成熟不是短期的,它可能在未来的5年甚至10年之后,才能形成成熟的数据交易和数据交换市场,但在短期内,企业级的大数据应用会蓬勃发展,目前很多大企业已经先行了,他们意识到数据是重要的资产,认为能够把客户数据承载下来,并管理好,将是下个10至20年企业的核心竞争力!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12