
工业大数据成中国赢得新一轮革命竞争的钥匙
“相比于印度、越南、印尼,中国的劳动力成本优势正在丧失,但我认为智能制造和智能设备的物联网应用却能为中国重新赢得竞争力。”SAP全球研发网络总裁柯曼认为。基于庞大的制造业基础,中国拥有全球最大的机器、设备市场,他们在制造过程中可以产生海量的大数据;与此同时,中国的智能设备应用也必定是全球之最,这些设备将不间断地产生海量的数据。“破解这些大数据就是中国在新一轮制造革命中赢得竞争力的钥匙。”柯曼强调。
对于数据管理来说,以往的数据形式大多是被精心分类的、有序的结构性数据,而大数据时代产生的数据则变成了“杂乱无章、随机出现”非结构性数据。不仅如此,以往对于数据的管理主要是基于历史数据,而大数据时代的数据则相当一部分是“实时数据”。在SAP看来,对历史数据的分析就好比汽车里的后视镜,没有后视镜的话,开车会没有安全感,因为你不知道后面发生了什么事情,但更重要的是车的前挡风玻璃——对实时数据的分析。
工业大数据:中国赢得新制造革命的核心竞争力
中国的快速消费品公司农夫山泉从2008年就开始使用移动系统,公司每位业务代表每天都会拜访客户或门店,把大量的数据传回公司,而其中大部分都是照片等非关系型数据,每月累计的数据量达到1.8TB,而数据量还在与日俱增。面对这样庞大的数据,原有的数据系统几乎处于瘫痪状态,一次计算时间需要24小时,月底无法及时提供库存报表,影响发货速度,更不要说实时察看库存数据的动态变化,并做出预测性分析了。
快速、高效的内存计算应时而生。与以往从硬盘读取数据不同,内存运算是把大量数据装载在内存中,CPU直接从内存读取数据——内存硬件价格的大幅降低和需求的推动使得内存运算成为可能。2011年,SAP在经历一系列收购和整合的基础上,推出内存计算的数据库平台SAPHANA。在农夫山泉的案例中,HANA平台的内存计算将原先需要24小时的逻辑运算缩短到了46秒。
柯曼认为,不断增加的数据量、数据种类和数据产生速度是企业数据管理的新挑战,而企业数据的安全性、标准化、法律法规、工业宽带基础设施等方面的建设都是实现工业4.0的重要条件。越来越多的程序自动化给系统安全带来了诸多挑战,也为敌国和竞争者的蓄意攻击和破坏提供了便利。而工业4.0中要让价值链上的合作伙伴共同合作,也需要一套共同标准。无论如何,数据是这一场物理信息融合的制造革命中的基石,没有对数据的掌控,一切发展都将成为“无米之炊”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29