
盘点10个有趣的奇葩大数据
大数据早已成了我们耳熟能详的词汇,大数据也逐渐得到的政府,企业和个人的重视。基于此,大数据究竟在如何影响着我们的生活?
因为他,我们的生活是否变得更舒适?亦或,从此我们的生活细节都要暴露在数据的分析之下?我们该如何正确认识大数据?现在,先让我们了解一些真实的大数据的例子。
从地球到月球的距离
如果我们将一天内产生的数据全部烧录进DVD光碟内,那这些光碟叠起来可以搭成地表到月球的DVD高塔,而且还是双塔。
大数据与星星
根据IDC的分析,2008年时数码数据量就超过了目前已知的宇宙内星星数量,而且以数据成长的速度,2023年时全球数据量将会超过亚佛加厥常数(Avogadro's number)--也就是6.022×10^23。
亚佛加厥常数
男性内裤销量反映经济形势
已故美联储前主席格林斯潘(Alan Greenspan)曾提出过一个著名的"男性内裤销量反映经济形势"的理论。即经济形势良好,内裤销量会平稳上升,反之则下降。
原因很简单,经济萧条时,男性会节俭开支,少买内裤。。。
啤酒与尿布
这是个经典的商场数据分析案例。在上世纪90年代,美国沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,"啤酒"与"尿布"两件看上去毫无关系的商品会经常出现在同一个购物篮中。
啤酒与尿布
在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。
第2页:女性头发与经济波动,手纸与肥皂
女性头发与经济波动
据日本最大日用品制造公司"花王",于1987年开始在东京银座对1000名,二十至三十岁女性进行的年度民调后汇编的"发型统计"显示,他们偏好蓄长发时显示经济在复苏中,反之则经济仍在恶化。
比如,1997年,留短发的比蓄长发的人多,那年为日本经济"最差"的一年,2008年经济有所起色,超过八成受访女性头发都很长。
手纸与肥皂
双十一海报
去年“双十一”(11.11)这一天,京东商城卖出了80万块香皂,重量约115吨,相当于23头大象;基情无限的同时,手纸卖出900万卷,8亿多抽手纸,按一秒钟扯一抽的话,至少要扯3年,按一卷纸30米算,900万卷至少可绕地球7圈。
处女座与小龙虾
根据"首届小龙虾美食节"的"小云WiFi美食大数据"显示,女性对美食喜欢程度超过男性,66%的女性喜欢吃小龙虾;而在年龄统计中发现,20-25岁的美食达人最多,处女座是所有星座中最爱食用小龙虾的人群。
一位美食大V不无严肃的认为,从一个侧面说明现在商家的小龙虾的制作工艺、烹饪方式已经达到了一定的高水准,"毕竟处女座的追毛求疵的性格是不争的事实"。
女服务员与股市
在这个刷脸的时代,容貌早已成了求职的隐形标准(不过凤姐当上凤凰客户端主笔,理当另说)。据纽约观察员的解读,当美艳的女服务员随店可见时,经济必陷困境,反之则显示经济兴旺,换句话说,当你到处碰见美女服务员,便可考虑抛售股票。
服务员与股市
该观察员的解释是,当经济红火,颇有点"资本"的女性很容易找到工作环境舒适的工作,诸如商品模特、推销员等。此外,男性经济宽裕后也更容易"金屋藏娇"。
大数据遇到爱情
美国波士顿数学家克里斯·麦金利(Chris McKinlay)注册一个婚恋网站后,认为他们的配对模式不合适,于是他自己写程序,只花了不到90天时间就在茫茫人海中找到了心仪的对象。
这位克里斯开设了12个账户,利用计算机程序随意作答网站的配对问卷,从2万名用户中收集到600万条问题的答案,然后利用演算程序筛选出5000名住在美国的活跃用户,从中按性格分类又选出最符合择偶条件的2组女子。
第3页:看完速7,去速8;大数据遇上爱情
之后克里斯又创建了两个账号,诚实地回答这两类姑娘们最关注的500个问题。回答完问题后,他发现和自己匹配度在90%以上的超过10000人,最高匹配度达到了99%。
克里斯·麦金利
为了获得这些姑娘们的关注。克里斯编了一个新程序,自动访问与他匹配度高的对象,对方回访他的页面时,就会给他留言。
在经过不少尝试后,克里斯终于约到一名亚裔女孩。他见面时主动披露破解网站的秘诀,对方极为欣赏,二人开始恋爱关系。并在恋爱一周年后克里斯求婚成功,二人终成眷属。如此"用心",也是醉了。
食色性也 "看完速7,去速8"
《速度与激情7》
食色性也:凡是人的生命,不离两件大事:饮食、男女。《速度与激情7》上映时,"看完速7,去速8"一度成为相互调侃的流行语。而日前,猫眼电影整合了2015年上半年的售票数据,做了一个有意思的数据报告。报告根据用户购买电影票的习惯,结合用户在美团上的相关消费行为,发现了有意思的现象。
数据显示,用户在购买电影票的同时,有79%会进行餐饮消费,10%会选择唱K、桌游、足疗等休闲活动,还有11%会选择酒店消费。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07