如何用大数据的方法绘制知觉图
统研究时代,知觉图(perceptual map)是一个简洁直观解析品牌定位的经典工具。然而随着大数据时代的降临,传统的数据获取方法受到了不断的冲击,原来使用焦点小组(Focus Group) 或调研问卷获得数据变成了一项费时费力,且耗费成本的工作。
大数据背景下,可不可以有更简单,更快捷的方式获知品牌及其竞争对手的定位?可不可以快速评价品牌定位是否达到目标位置?可不可以全面检验修正品牌传播策略正确与否?
这些问题都值得我们来探讨。
先来说说知觉图的含义:
知觉图是消费者对某一系列产品或品牌的知觉和偏好的形象化表述。目的是尝试将消费者或潜在消费者的感知用直观的、形象化的图像表达出来。特别是用在产品、产品系列、品牌的定位方面,也会用于描述企业与竞争对手的相对位置方面。
知觉图可以是多维的,但通常的情形是二维的。
下图通过两维展示了消费者心目中笔记本电脑品牌在用户导向/标准配置,创意设计/经济实用方面的品牌定位。此例中,消费者认为,苹果品牌代表了创新设计及用户导向的特性。而三星笔记本则代表了经济实用和标准配置。
*非真实数据,仅用于展示
绘制知觉图,涉及到至少6个步骤:
确定研究方向:
作为咨询研究公司,研究方向往往是通过对消费者的研究,获取其对于客户某产品及其竞争对手产品的感觉或偏好。这时我们要选择符合该产品的一系列变量指标以及想要研究的目标品牌。
通常来说, 品牌和变量指标之间存在一个理想的比例关系,即1.3-1.6倍,也就是说如果研究8-10个品牌,大致需要14-15个变量。在传统研究时代,通过问卷获取消费者认知的阶段中,对于品牌的研究一般不超过20个,否则可能导致调查对象的疲倦,最终影响调研结果。而在大数据获取的背景下,数据是本身的获取是相对客观的,并不存在这个问题。这也算是大数据绘制知觉图的优势之一。
获取数据
本次介绍的大数据获取用户感知数据的方式,主要来自电商评论数据的获取。与传统途径相比,它具有采集快速,数据量大的特点。
在HCR最新的研究项目中,仅6个月内关于几大剃须刀品牌的商品评论数据就采集33万条之多,而采集时间却仅用了一天。省去了问卷设计,调研对象邀约,答题,统计等多个环节,最终获取到多于问卷调研对象百倍的原始数据。
当然这种大数据的采集方式,也会存在短板,比如评价不同品牌的个体不相同,个人评论的尺度的不同可能会影响最终的结果。但通过大量级的数据收集,可以将这种误差控制在可控范围内。任何一项研究都可能存在误差,而传统问卷抽样所导致的误差问题可能更明显。
确定产品变量
传统问卷的采集形式中,确定产品维度的工作是在数据采集前完成的,即先确定需要考察的产品属性,之后体现在问卷设计当中向调查对象提问。
在大数据的研究方法中,在数据采集之后,可通过高频属性的方式,提炼出某产品最受关注的一系列属性。例如:物流,服务,促销,价格,外观,功能,质量,体验等。每一项指标分为正面,中性,负面。相当于以往问卷式研究中的1-3分量表,即负面等于1分表示不满意,中性等于2分表示一般,正面等于3分表示满意。
数据处理
计算每一条评价在不同的指标下的分数,汇总后取平均值,得到不同品牌在各项指标下的平均得分。此处以剃须刀为例(非真实数据):
用因子分析中的主成分分析法可以得出每个品牌及每项指标的两维(X,Y)值:
绘图
根据品牌及指标的X,Y值,绘制出知觉图。在绘制知觉图的时候,有一项工作是非常重要的。即坐标轴的命名。此处可根据轴两侧45%角内指标的特性,为X,Y轴命名。例如:X轴负半轴,可根据便携,价格和促销/赠品来命名,比如“经济实用”。如果遇到命名指标数量过少的情况,如Y轴负半轴,则可用正半轴相关指标的反义词来辅助命名。
图表解读:
位置越相近的品牌,说明他们的市场定位越接近。而同属一个象限的品牌,在本质上可以被聚类。例如博朗与松下;奔腾,科美及朗威;飞利浦与飞科。他们彼此形成强烈的竞争关系。对于这些品牌,可以通过知觉图检测品牌定位的正确与否,通过逐渐改变品牌定位的方法,迁移到理想的新位置。
大数据时代的到来,提供了我们更多,更大的数据。获取数据的时间缩短了,成本降低了。但对于传统研究方法的借鉴,仍然是一个值得关注的话题。都说大数据往往缺少深入洞察,但HCR一直致力于将丰富的调研分析经验融入到新时代的背景下,将大小数据融合,不断为客户创造更高价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11