
“大数据”仅仅是一个数据应用先进方法
看了众多对“大数据”的说法,有人说大数据需要“全息”的数据,才能做到真正的大数据应用,才能做到理想中的BI;还有人说大数据重点是各种数据处理以及更海量数据和海量信息,从超级大的数据挖掘出的东西,往往价值很大。
不管哪种说法,我觉得他们更适合去做“科学研究”,在企业这样干,哪是个头,什么时候才能有结果啊?近期一个段子说,大数据很牛的系统框架搭建完毕,然后问你也需要解决什么业务问题?然后,就没有然后了。。。
所以我想表达的一个观点,是“大数据”仅仅是一个数据应用先进方法,什么4V非结构化处理,非结构化处理、数据挖掘、人工智能,这些N年前就有了好吧?有人说是概念炒作,我认为只说对了一小半,原因如下:
1、传统BI过于注重决策支持,没有形成数据应用闭环,这是传统BI没有解决的缺陷,而大数据提供了这个契机。从我对传统BI在过去和现在应用的了解,传统BI的应用重心99%仍然在直接和间接的决策支持,如果你和做过多年传统BI,且不了解大数据的同学问,数据分析可以直接在系统中调用,智能判断,这个你们做么?基本会回答不做,因为这不是项目范围,还有人说,这个咋做?
2、对最细粒度维度的挖掘,可以实现自动化智能的效果,而传统BI不行。大数据时代重新将技术从实施时候的“厂商”,拉回到实施人员,使得很多想象空间完全打开。如果你观察传统BI的同学,一般是IOS等几大厂商的产品(包括数据挖掘产品)和SQL足够熟悉,这种技术环境造就的团队,已经没有技术实力来实现通过多个系统接口,将数据历史数据+实时收集=〉数据挖掘=〉系统调用数据挖掘结论=〉直接影响用户体验=〉自动评估效果这样的闭环数据应用中。
例 如你发现某些特定用户来写错送货地址,传统BI能做到的是,发现有部分用户写错地址,原因是换地方了,但是按业务经理的说法,我也知道这个事情啊,写错了 就只能人工解决啊,分析出来有啥用?于是大数据可以根据写错地址的原因进行分析,可以发现有搬家、换租地方(换城市)等,那么可以根据(时间+IP)等组 合用户信息区别来自动提醒,直接解决了问题,而不是分析出一个结论,把困难交给了相关的业务经理。
3、一定得全息、全量问题发现才能算大数据,或者才能实施应用么?持这种观点的同学永远想象不到,互联网时代是能解决多少问题就有多少价值的理念。
就如上面的案例,你可以说不能解决全部填错地址的问题,但是当你发现你这样做已经解决了很多消费者的问题,挽回多方损失的时候,你就会觉得,这事还真值得去做。等你搜集到全息数据,黄花菜都凉了,而问题还不一定能解决,因为你重点是纠结这个数据到底全还是不全啊
结论:
“大数据”仅仅是一个数据应用先进方法,它的核心不是全息数据,也不是海量非结构化、结构化数据混合处理,而是是否打开了你应用数据的心扉,你是否可以用这个先进武器,解决你之前解决不了,甚至想都不敢想的问题。
大数据包含但不限于原有BI和数据挖掘的应用范围,既可以是预测,也可以是宏观报告、问题分析,还可以将问题分析和解决问题集成在系统中,将你的系统变得越来越Smart,自然用户体验会逐步提升,营销、售后问题也能有更多解决。
任何说大数据主要是在预测、关联等定义的描述,都是在限制大数据的发挥,或者给自己贴金而已,大数据不应该被某些人或团队给圈死在太局部的应用中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16