
“大数据”仅仅是一个数据应用先进方法
看了众多对“大数据”的说法,有人说大数据需要“全息”的数据,才能做到真正的大数据应用,才能做到理想中的BI;还有人说大数据重点是各种数据处理以及更海量数据和海量信息,从超级大的数据挖掘出的东西,往往价值很大。
不管哪种说法,我觉得他们更适合去做“科学研究”,在企业这样干,哪是个头,什么时候才能有结果啊?近期一个段子说,大数据很牛的系统框架搭建完毕,然后问你也需要解决什么业务问题?然后,就没有然后了。。。
所以我想表达的一个观点,是“大数据”仅仅是一个数据应用先进方法,什么4V非结构化处理,非结构化处理、数据挖掘、人工智能,这些N年前就有了好吧?有人说是概念炒作,我认为只说对了一小半,原因如下:
1、传统BI过于注重决策支持,没有形成数据应用闭环,这是传统BI没有解决的缺陷,而大数据提供了这个契机。从我对传统BI在过去和现在应用的了解,传统BI的应用重心99%仍然在直接和间接的决策支持,如果你和做过多年传统BI,且不了解大数据的同学问,数据分析可以直接在系统中调用,智能判断,这个你们做么?基本会回答不做,因为这不是项目范围,还有人说,这个咋做?
2、对最细粒度维度的挖掘,可以实现自动化智能的效果,而传统BI不行。大数据时代重新将技术从实施时候的“厂商”,拉回到实施人员,使得很多想象空间完全打开。如果你观察传统BI的同学,一般是IOS等几大厂商的产品(包括数据挖掘产品)和SQL足够熟悉,这种技术环境造就的团队,已经没有技术实力来实现通过多个系统接口,将数据历史数据+实时收集=〉数据挖掘=〉系统调用数据挖掘结论=〉直接影响用户体验=〉自动评估效果这样的闭环数据应用中。
例 如你发现某些特定用户来写错送货地址,传统BI能做到的是,发现有部分用户写错地址,原因是换地方了,但是按业务经理的说法,我也知道这个事情啊,写错了 就只能人工解决啊,分析出来有啥用?于是大数据可以根据写错地址的原因进行分析,可以发现有搬家、换租地方(换城市)等,那么可以根据(时间+IP)等组 合用户信息区别来自动提醒,直接解决了问题,而不是分析出一个结论,把困难交给了相关的业务经理。
3、一定得全息、全量问题发现才能算大数据,或者才能实施应用么?持这种观点的同学永远想象不到,互联网时代是能解决多少问题就有多少价值的理念。
就如上面的案例,你可以说不能解决全部填错地址的问题,但是当你发现你这样做已经解决了很多消费者的问题,挽回多方损失的时候,你就会觉得,这事还真值得去做。等你搜集到全息数据,黄花菜都凉了,而问题还不一定能解决,因为你重点是纠结这个数据到底全还是不全啊
结论:
“大数据”仅仅是一个数据应用先进方法,它的核心不是全息数据,也不是海量非结构化、结构化数据混合处理,而是是否打开了你应用数据的心扉,你是否可以用这个先进武器,解决你之前解决不了,甚至想都不敢想的问题。
大数据包含但不限于原有BI和数据挖掘的应用范围,既可以是预测,也可以是宏观报告、问题分析,还可以将问题分析和解决问题集成在系统中,将你的系统变得越来越Smart,自然用户体验会逐步提升,营销、售后问题也能有更多解决。
任何说大数据主要是在预测、关联等定义的描述,都是在限制大数据的发挥,或者给自己贴金而已,大数据不应该被某些人或团队给圈死在太局部的应用中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16