京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据来自哪里?大数据会去哪里?
初识大数据,首先我们需要知道什么是大数据呢?用通俗一点的话来说就是一堆一堆又一堆的、海量的数据。通过百度百科我们知道“大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”
在当下的互联网飞速发展的时代,任何一个技术都是为了达到某种目的而发展的,而大数据从根本上来说就是为了做决定存在的,大数据为企业的决策提供有力的依据。比如市场方针的制定,精准营销的目标群体、营销数据等等。大数据的存在不仅是为企业提供了数据支撑,而且为用户提供了更为便捷的信息和数据服务。
大数据体现的是数据的数量多,数据类型丰富。我们需要通过对数据的关系的的挖掘,才能最终将数据进行更好地利用。
谁是物联网?
物联网是什么呢?通俗的概念来讲,物联网就是通过网络信息技术和工业自动化控制技术将硬件和网络进行有效的集合并通过传感器进行对应的信息控制,以此达到对物件的自动控制的混合网络。通过百度百科我们知道“物联网(The Internet of things)就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用。”
随着工业控制、信息识别和互联网网络的发展,物联网将是下一个信息浪潮。
大数据与物联网的联系既有区别也关联。以小编的个人愚见,物联网行业如果需要有较好的发展,那么需要大数据强力的支持,而针对物联网行业的大数据,则是不断来源于物联网超级终端的数据采集。所以,物联网对大数据的要求相比于大数据对物联网的依赖更为严重。
大数据来自哪里?大数据会去哪里?
浅谈大数据的来源
大数据的来源这个问题其实很简单,大数据的来源无非就是我们通过各种数据采集器、数据库、开源的数据发布、GPS信息、网络痕迹(购物,搜索历史等)、传感器收集的、用户保存的、上传的等等结构化或者非结构化的数据。
浅谈大数据能够带给我们什么
大数据能给我们带来什么?很多公司现在都在炒大数据的概念,但是真正能做好的有几个呢?大数据重在积累、强在分析、利于运用。没有经过多年的有意的数据收集、没有经过严谨细心的数据分析。那么,如何来谈论大数据能给企业或者个人来带来便捷呢?
大数据能带给企业的项目立项的数据支撑、精准化营销、电商的仓位储备等等。但是针对个人用户有时候就是麻烦了,因为你随时都可以接收到很多的营销短信、隐私暴露太多。另外对于个人用户大数据的好处是可以快速找到自己想要东西、为用户提供信息服务、获取消费指导等等。换个角度看问题的话,小编认为应该是利大于弊。
大数据是怎么带给我们想要的支撑?
庞大的数据需要我们进行剥离、整理、归类、建模、分析等操作,通过这些动作后,我们开始建立数据分析的维度,通过对不同的维度数据进行分析,最终我们才能得到我们想到的数据和信息。
1、 项目立项前的市场数据分析为决策提供支撑;
2、 目标用户群体趋势分析为产品提供支撑和商务支撑;
3、 通过对运营数据的挖掘和分析为企业提供运营数据支撑;
4、 通过对用户行为数据进行分析,为用户提供生活信息服务数据支撑和消费指导数据支撑。
如何通过大数据挖掘潜在的价值?
模型对于大数据的含义
模型有直观模型,物理模型,思维模型,符合模型等。我们在进行数据挖掘前需要考虑我们需要用这些数据来干什么?需要建立怎么样的模型?然后根据模型与数据的关系来不断优化模型。
只有建立了正确的模型才能让数据的挖掘和分析更有便捷。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09