京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网络游戏的数据挖掘与数据分析
近日在一个学术论坛中听到了,北大光华商务统计及经济计量系副教授张俊妮,主题为“数据挖掘的应用案例”的演讲,结合网络游戏行业特点,简要思考一下数据挖掘与数据分析,希望遇到同行业中从事此领域工作的朋友,建立联系和交流。网络游戏行业随着规模的扩大和行业逐渐成熟,将会以具有技术含量和管理积淀形成核心竞争力,将对此领域长期关注和持续性思考研究。
基本原理流程:围绕数据建立 “商业理解”=“数据理解”-“数据准备”=“建模”-“模型评估”-(“商业理解”)-模型发布
数据管理体系的建立是一个长期的过程,其中数据质量的好坏起到相当重要的作用,网络游戏运营中将产生大量的未经梳理的数据,数据是分析的基础,与其他行业相比,网络游戏行业具有一些天然的优
1丰富的数据源,对象用户达到一定级别,所产生的数据种类多样,丰富而且具有持续性
2数据相对客观真实,采集和筛选方便,例如:“注册”“登陆”“游戏行为”等,都是数字化网络记录和管理
3数据信息与需求紧密联系,因果关系脉络清晰,网络游戏的各个环节通过数据信息的形式紧密联系,信息链条相对纯净,“噪音”少,环环相扣产生数据因果。
4信息化程度高,主要基于互联网的商业模式使得各运营环节都产生相关数据信息,从业人员普遍理解信息数据的重要作用,信息数据是企业核心资产和经营基础。
在与张教授的交流中,对于数据管理体系中的重要性,一致认为对于“商业理解”的重要程度超过其他学术和数据分析工具,在以往的案例中,团队组成包括“商业管理”“IT技术支持”“统计分析”等组成部分,一个项目实施期长达一年。数据体系将是一个反复实践的过程,不断随着具体情况的变化而休整和增加。
关于网络游戏的数据挖掘和数据分享,此前已经有较长一段时间的积累和探索,但在过程中所遇到的问题缺乏多角度的交叉验证,游戏是一个不断创新和变化的产业,游戏玩家的用户规模和行为规律呈现越来越复杂的局面,一个公司的数据管理体系的建立和完善需要整理通力合作和长期积淀,试从个人角度提出建立数据管理体系的流程和建议,由于缺乏实践参照,难免理想化和脱离实际,仅做参考。
一、数据积累
网络游戏运营的数据积累体现在多方面,从游戏用户的行为数据积累,到市场行销推广的数据积累,各种能够产生数据和数据之间的关联,进行长期持续性的积累。通过数据库或成熟的数据仓库产品,将各类数据有效规范管理,以备今后的数据体系应用。
二、观念培育
数据管理的观念在执行过程中逐渐培育,认识到数据对于企业运营的重要意义和积极作用,为今后建立数据管理体系制定长期可能的规划,长期渐进的思维理念。
三、理论和体系人员的准备
数据管理体系中,对于自身游戏运营的商业理解和理论准备是一个长期的过程,而体系人员是建立在对自身运营体系和行业发展方向深入认知的前提下,内部的广泛交流和有效沟通,形成良好的信息体系建立大环境。
四、渐进的体系实施
数据管理体系是企业的综合实力所决定,在正确的时间做正确的事情,根据企业发展的不同阶段状况,渐进式逐步推进信息数据管理体系的建立,不一定需要以某个固定的体系名称,而是以期达到实际效果,能够实现以数据辅助指导运营,不同的实施阶段有不同程度的效果。
网络游戏的数据挖掘与数据分析可以本着“不为名,只图实”的原则,能够对游戏运营管理有帮助,及时是简单的表格罗列筛选也是一种进步,不同程度的数据挖掘和分析产生不同的贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01