
网络游戏的数据挖掘与数据分析
近日在一个学术论坛中听到了,北大光华商务统计及经济计量系副教授张俊妮,主题为“数据挖掘的应用案例”的演讲,结合网络游戏行业特点,简要思考一下数据挖掘与数据分析,希望遇到同行业中从事此领域工作的朋友,建立联系和交流。网络游戏行业随着规模的扩大和行业逐渐成熟,将会以具有技术含量和管理积淀形成核心竞争力,将对此领域长期关注和持续性思考研究。
基本原理流程:围绕数据建立 “商业理解”=“数据理解”-“数据准备”=“建模”-“模型评估”-(“商业理解”)-模型发布
数据管理体系的建立是一个长期的过程,其中数据质量的好坏起到相当重要的作用,网络游戏运营中将产生大量的未经梳理的数据,数据是分析的基础,与其他行业相比,网络游戏行业具有一些天然的优
1丰富的数据源,对象用户达到一定级别,所产生的数据种类多样,丰富而且具有持续性
2数据相对客观真实,采集和筛选方便,例如:“注册”“登陆”“游戏行为”等,都是数字化网络记录和管理
3数据信息与需求紧密联系,因果关系脉络清晰,网络游戏的各个环节通过数据信息的形式紧密联系,信息链条相对纯净,“噪音”少,环环相扣产生数据因果。
4信息化程度高,主要基于互联网的商业模式使得各运营环节都产生相关数据信息,从业人员普遍理解信息数据的重要作用,信息数据是企业核心资产和经营基础。
在与张教授的交流中,对于数据管理体系中的重要性,一致认为对于“商业理解”的重要程度超过其他学术和数据分析工具,在以往的案例中,团队组成包括“商业管理”“IT技术支持”“统计分析”等组成部分,一个项目实施期长达一年。数据体系将是一个反复实践的过程,不断随着具体情况的变化而休整和增加。
关于网络游戏的数据挖掘和数据分享,此前已经有较长一段时间的积累和探索,但在过程中所遇到的问题缺乏多角度的交叉验证,游戏是一个不断创新和变化的产业,游戏玩家的用户规模和行为规律呈现越来越复杂的局面,一个公司的数据管理体系的建立和完善需要整理通力合作和长期积淀,试从个人角度提出建立数据管理体系的流程和建议,由于缺乏实践参照,难免理想化和脱离实际,仅做参考。
一、数据积累
网络游戏运营的数据积累体现在多方面,从游戏用户的行为数据积累,到市场行销推广的数据积累,各种能够产生数据和数据之间的关联,进行长期持续性的积累。通过数据库或成熟的数据仓库产品,将各类数据有效规范管理,以备今后的数据体系应用。
二、观念培育
数据管理的观念在执行过程中逐渐培育,认识到数据对于企业运营的重要意义和积极作用,为今后建立数据管理体系制定长期可能的规划,长期渐进的思维理念。
三、理论和体系人员的准备
数据管理体系中,对于自身游戏运营的商业理解和理论准备是一个长期的过程,而体系人员是建立在对自身运营体系和行业发展方向深入认知的前提下,内部的广泛交流和有效沟通,形成良好的信息体系建立大环境。
四、渐进的体系实施
数据管理体系是企业的综合实力所决定,在正确的时间做正确的事情,根据企业发展的不同阶段状况,渐进式逐步推进信息数据管理体系的建立,不一定需要以某个固定的体系名称,而是以期达到实际效果,能够实现以数据辅助指导运营,不同的实施阶段有不同程度的效果。
网络游戏的数据挖掘与数据分析可以本着“不为名,只图实”的原则,能够对游戏运营管理有帮助,及时是简单的表格罗列筛选也是一种进步,不同程度的数据挖掘和分析产生不同的贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01