
大数据思维下的统计新变革
日前,谷歌宣布其云计算平台通过大数据分析准确地预测了巴西世界杯8强。据了解,谷歌云计算平台使用了英国体育数据提供商Opta Sports的数据,评估了全球每个职业足球联盟过去多个赛季的情况,以及巴西世界杯小组赛期间的统计数据。于是乎,大数据再度成为舆论关注的焦点,对于其应用价值的讨论更加热烈。
然而,我们发现,即使以谷歌强大的技术实力,也不得不从英国体育数据提供商Opta Sports那里获取数据。也就是说,数据的采集并不是谷歌的优势,大数据产业走向商用和规模化发展,更多的要依赖Opta Sports这样的数据采集者。从这个角度看,作为最具共识性和采集能力的统计部门,无疑将是大数据产业发展壮大的基础。反过来看,从大数据发展的趋势看统计行业的发展方向,也必然全面应用大数据思维。我们注意到,从国家统计局局长马建堂在2012年年底提出“统计部门要拥抱大数据时代”,到不久前国家统计局在厦门建立首个大数据基地,可以断言,统计行业的大数据变革已经到来。
2013年11月,国家统计局与百度、阿里巴巴等11家企业签订了大数据战略合作框架协议。此举目的在于共同推进大数据在政府统计中的应用,不断增强政府统计的科学性和及时性。马建堂在协议签订时表示:“现在许多发达国家纷纷将大数据利用提升到国家战略层面,我们也要适应这一大势,将大数据视为国家战略资源,主动拥抱大数据时代,积极抢抓机遇、应对挑战。”数据与统计是一对共生词,而数据成为生产要素的前提条件也是有效的梳理与归类,这恰恰是统计的内容。马建堂说,大数据为政府统计提供了总体性、非结构化、丰富真实的原始资料,可以极大地缩短数据采集时间,减少报表填报任务,减轻调查对象负担,提高统计数据质量。
一场统计方式和方法的变革正在酝酿。企业既是大数据的主要生产者,也是经验丰富的使用者,还是大数据的直接受益者,有数据的资源、有应用的技术、有市场的机制。而国家统计局作为组织领导和协调全国统计工作的主管部门,具有统计制度和标准制定,统计数据搜集、发布、分析等方面的优势。
统计数据是各级领导作出科学决策的重要支撑。随着企业一套表建设的基本完成,各行各业的数据被采集上来,这只是第一步,用好这些数据是关键。企业一套表只是一个业务系统,更重要的是在这套系统上帮助统计部门搭建一套数据资源体系,通过这套体系来对数据进行规划、整理和加工,建设监测评价中心、辅助决策中心,这也是统计行业未来发展的必然趋势。
现在一些地方统计局已经开始做统计方面的规划和使用。例如原来的统计工作主要是查询,现在希望除了查询、检索、展示之外还具备监测、评价的功能。监测评价需要标准,在政府部门这个标准就是政策。监测是对企业、家庭等对象进行调查,数据上传之后经过计算、加工等与初定的指标相比较,并对监测结果进行评价,发现问题及时预警、报警。辅助决策则更需要智能化,当发现监测评价出的结果与初定指标存在较大差异时,就要追本溯源,为领导提供准确的问题分析报告,列出导致问题的主要原因,提出可行性建议,为领导提供辅助决策,为其做出下一个阶段的判断和调整提供帮助。例如,自去年以来,浙江温州市统计局建立了GDP联席会议制度,按季度召集30多个部门进行分析论证部门数据与GDP数据之间的关系,特别是充分运用电力、银行、交通、财政、外贸等部门数据,以及对GDP数据的影响,使GDP数据更加科学可靠。今年进一步扩大了GDP联席会议职能,把涉及部门的经济、社会、民生等监测评价数据进行综合审查分析,进一步提高统计数据质量。
与此同时,统计行业的大数据变革,也将为大数据产业的下一步发展打造坚实的基础。从企业一套表到电子终端采集数据,中国统计的技术和制度改革近两年不断深入,而与大数据概念的交汇与融合也将助推中国官方数据更加真实全面。统计部门在人口、农业、投资、交通等领域,大力研究利用遥感RS、地理信息系统GIS、全球定位系统GPS为代表的空间信息技术和物联网技术,既极大提升了统计信息化水平,也为进一步推进大数据的统计应用打下了较好的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29