
大数据如何作用于金融领域并创造价值
第一,你所说的大数据软件,不太让人明白。至少在行业里少提到大数据软件这个说法,可以说大数据技术架构,也可能说数据挖掘软件。不过我理解,你提的大数据软件应该是围绕大数据分析与应用的一系列工作与系统吧?
第二,你提到的金融数据,这个涉及面很广,就我有限的接触来看就有很多,比如基金公司的销售数据,客户持有份额与交易数据,客户接触数据,客户网站浏览数据等;比如银行涉及到进出帐户的数据,客户基本信息的数据;比如保险公司有客户购买保险的数据等。概括而言,可以分成以下几大类:客户基本属性数据、客户产品购买数据、客户交易行为数据、客户偏好数据……能做什么分析需要看能获取什么数据,如果你能够把行业第三方的数据整合进来,可做的挖掘就多了。例如,如果做为基金公司能够获得用户在网络上的浏览行为数据,你就可以判断用户最近有没有关注相关产品,有没有关注竞争对手的产品。
第三,谈谈大数据具体在金融行业的应用领域,据我有限的接触来看,以下领域需要大数据发挥更大更多的作用。
1、用户授信:这其实是数据挖掘最早应用的领域之一,国内的数据挖掘最早基本上也是基于授信所需要的分类挖掘算法而发展的。基于大数据对用户信用风险进行判断,是一个重要的方向。特别是目前很多信用评估体系是依赖于国外的评估机构,如果能够基于大数据(看你能获得何种数据)来构建起信用评估机制来,这个会有市场。
2、交易风险控制:这个跟用户授信不同。原来的数据挖掘能够实现对用户静态的信用评估,基于大数据的流式处理能力可以实现对用户的动态评估,即交易风险的判断。例如,当你发现同一个帐户在近乎相同的时间在不同的地区进行信用卡交易的时候,这个时候交易风险就产生了。客户的信用卡可能被盗,也可能存在欺诈交易行为。
3、提现预测:目前互联网金融的一个很大的特定就是打破了原来流动性和收益率不能兼得的特征。而现在的很多“宝宝”能够两者兼得,除了跟创新有关外,在技术层面如果能够实现大数据对产品的支撑,会做得更高效。具体来说,“宝宝”们需要满足每天用户提现的需求,这就需要储备流动性强的资金,储备少了,会出现挤兑;储备多了,而资金不能得到充分利用,无法产生更多的收益。所以需要构建预测模型,实现对资金需求的有效预算与管理。
4、营销监控与评估:这个是容易被忽视的领域,因为是涉及到具体战术的工作。以后大多数人都关注营销效果的最终效果,比如搞了个客户营销产品,看最终转化了多少,但其实有很多环节可能会影响到用户的转化。比如接触情况,比如吸引性,比如消费滞后性等等。这些需要依赖于大数据基于更客户更准确的解答。
5、流失预警:如果你能获取的数据可以洞察用户在整个相关产品里的使用行为,你就可以洞察用户潜在的流失风险与去向。例如,你会发现原来较优质的客户最近在一段时间里突然不太活跃了,这可能就会有风险,但是到底是最近比较忙没有交易?还是另有他爱了?这个需要依赖于大数据进行洞察。用户可能这段时间正在关注或已经购买竞争对手的产品,这可以提供更大的营销管理价值。
……
其实还有很多,就不多说了,没有哪个领域更有分析价值,取决于你所关心的核心问题。
第四、关于发展方向:我想一个趋势其实已经行成就是金融行业和第三方行业资源的整合,比如金融和互联网企业,金融和大数据拥有者的资源整合等。不论是哪些行业的资源整合,一个不可规避的事实就是对传统金融工具的创新,所以想想现在的金融产品有哪些问题,可能就能找到创新方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08