
成为一名合格的互联网分析师必须的条件
先反推来看,分析师到底是干什么用的?
个人理解,分析的目的和价值,是为了决策。
决策又分很多,是发掘市场服务投资,还是分析对手竞争策略,抑或发现新趋势储备前沿技术,还是具体到数据挖掘协助运营。 不同重点,可能对分析师能力经验和知识结构、人格素养要求都侧重不同。
从核心能力来看, 一是商业洞察力, 二是个人的组织影响力。
什么人有深刻的洞察力?这命题又挺大。是否掌握行业规律、产业格局、技术发展趋势、 商业竞争要素这些宏观和结构性知识和案例就可以?但如果没有细致对产品设计、技术资源投入、运营手段、研发管理这些生产层面经验和项目储备,又会导致想法和逻辑不严谨或难以落地。
组织影响力? 通常中大型公司才会出现分析师这样的职位。 没有soft skill、演讲能力, 没有政治素养和一定的个人魅力,就没法帮助分析结论推导决策的过程。
还 有一点,互联网产品和传统行业产品的一个本质区别,是用户驱动的高速变更迭代的产品。对于用户细分人群画像分析和需求挖掘、预测能力,也是互联网分析师水 平差异的重要表现。有一本书叫《小趋势》,谈美国总统竞选时,分析师如何针对细分人群的用户特征和心理动机制定策略,就是一个鲜活的案例。
这个问题有点大也有点模糊。
互联网分析师是一个很宽泛的概念,大致分为三种:一是在市场/行业研究机构做分析师,二是在大的公司战略部做分析师,三是在投资机构(VC/投行)做分析师。
限于我个人的经验,主要谈一谈前两种。
先明确一个点,互联网分析师的产品是报告(或观点),判断一个互联网分析师好坏的唯一标准就是:是否能产出高价值的报告(或观点)。
市场研究机构分析师最主要的工作是撰写行业研究报告,而行业研究报告的最主要功能个人觉得是:(1)在对行业现状和趋势充分分析的基础上,准确判断业务吸引力(要不要做和做什么);(2)研究各个环节的关键成功要素供企业经营参考(做什么)。
公司战略部的分析师有一部分职能也是撰写行业研究报告,但是在这个基础上,还要结合公司的资源和优劣势制定商业策略。
总体而言,个人觉得一个好的互联网分析师需要从如下几个方面努力:
1.商业洞察力。
能 够准确判断行业走势,能够找到新的机会,能够抓住业务关键点...培养商业洞察力的基础是具备丰富的行业知识(包括市场、技术、产品甚至关键人员等等), 熟练掌握行业分析的一些方法,但在这个基础之上还要靠个人的不断总结和领悟——因为做行业分析往往不是按照某个固定的流程解决某个确定的问题,而是首先需 要分析师去提出很有价值解决的问题并解决他,而提出问题对商业洞察力的要求是很高的。据我了解,有深刻商业洞察力的分析师(和其他从业人员)都是很少的。
总 体而言,在公司内部做分析师对商业洞察力要求更高一些,尤其是在领先的公司内部做分析师,因为公司的管理层对业务已经非常了解,你对业务的洞察力要超过管 理层的预期才算合格。而市场研究机构的商业模式往往是为不太懂行业的企业和个人提供咨询服务,所以对商业洞察力的要求可能会相对较低。
2.人脉和圈子。
这一点对在市场研究机构做分析师的童鞋更为重要。没有深厚的人脉,分析师的很多工作都没法开展(比如信息收集等等),在行业里的影响力也出不去,最终难以成为一个优秀的分析师。
对在企业里做分析师的童鞋而言,也要在自己的公司里有一个圈子,这样在开展研究的时候往往事半功倍。
3.产品爱好者。
这可能是互联网行业分析师和其他行业分析不一样的地方。互联网行业总体而言还是一个产品为王、用户为王的行业,对产品的热爱会让你更准确的判断行业的走势,如果你不热爱产品,不分析用户,只是人云亦云,是不可能做出出色的报告的。
4.其他。
比较好的演讲能力,撰写PPT的技巧。
另外,要成为一名好的分析师需要能调动很多资源,如果你能本着一种很好的助人和服务意识,能够整合已有的资源,尽量的去帮助这些值得你帮助的人,然后去发展更多的资源并形成良性循环,你的工作就会非常的得心应手。
我感觉互联网行业的分析师还需要一些特质,比如对用户体验和产品的把握。
这 个问题还需要进一步细化,作为分析师要有自身的定位,是战略分 析、用户分析、运营分析、市场分析还是产品分析,不同的定位能力要求不一样,我说互联网分析师对产品分析可能有所倚重也是因为互联网企业的核心可能就是产 品,战略、商业模式等都附着于产品,很多互联网企业的成功源于一款产品的成功。当然,现在出现的平台化趋向导致互联网不再是一个个零散的产品,而是一个蛛 网似的局,这时以合纵连横为特征的竞合战略布局成为更高阶的分析对象,但是...且慢,颠覆这布局的敌人可能没有一个旅的军队,只是带着一把快刀,白光一 闪,直插你心脏,所以即使你定位为战略分析师,也万万不能失去对用户体验、产品的感觉。
最终,一个理想的互联网分析师必须洞察人性...所谓人性,难道不就体现在一个个小小的动作中么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16