
成为一名合格的互联网分析师必须的条件
先反推来看,分析师到底是干什么用的?
个人理解,分析的目的和价值,是为了决策。
决策又分很多,是发掘市场服务投资,还是分析对手竞争策略,抑或发现新趋势储备前沿技术,还是具体到数据挖掘协助运营。 不同重点,可能对分析师能力经验和知识结构、人格素养要求都侧重不同。
从核心能力来看, 一是商业洞察力, 二是个人的组织影响力。
什么人有深刻的洞察力?这命题又挺大。是否掌握行业规律、产业格局、技术发展趋势、 商业竞争要素这些宏观和结构性知识和案例就可以?但如果没有细致对产品设计、技术资源投入、运营手段、研发管理这些生产层面经验和项目储备,又会导致想法和逻辑不严谨或难以落地。
组织影响力? 通常中大型公司才会出现分析师这样的职位。 没有soft skill、演讲能力, 没有政治素养和一定的个人魅力,就没法帮助分析结论推导决策的过程。
还 有一点,互联网产品和传统行业产品的一个本质区别,是用户驱动的高速变更迭代的产品。对于用户细分人群画像分析和需求挖掘、预测能力,也是互联网分析师水 平差异的重要表现。有一本书叫《小趋势》,谈美国总统竞选时,分析师如何针对细分人群的用户特征和心理动机制定策略,就是一个鲜活的案例。
这个问题有点大也有点模糊。
互联网分析师是一个很宽泛的概念,大致分为三种:一是在市场/行业研究机构做分析师,二是在大的公司战略部做分析师,三是在投资机构(VC/投行)做分析师。
限于我个人的经验,主要谈一谈前两种。
先明确一个点,互联网分析师的产品是报告(或观点),判断一个互联网分析师好坏的唯一标准就是:是否能产出高价值的报告(或观点)。
市场研究机构分析师最主要的工作是撰写行业研究报告,而行业研究报告的最主要功能个人觉得是:(1)在对行业现状和趋势充分分析的基础上,准确判断业务吸引力(要不要做和做什么);(2)研究各个环节的关键成功要素供企业经营参考(做什么)。
公司战略部的分析师有一部分职能也是撰写行业研究报告,但是在这个基础上,还要结合公司的资源和优劣势制定商业策略。
总体而言,个人觉得一个好的互联网分析师需要从如下几个方面努力:
1.商业洞察力。
能 够准确判断行业走势,能够找到新的机会,能够抓住业务关键点...培养商业洞察力的基础是具备丰富的行业知识(包括市场、技术、产品甚至关键人员等等), 熟练掌握行业分析的一些方法,但在这个基础之上还要靠个人的不断总结和领悟——因为做行业分析往往不是按照某个固定的流程解决某个确定的问题,而是首先需 要分析师去提出很有价值解决的问题并解决他,而提出问题对商业洞察力的要求是很高的。据我了解,有深刻商业洞察力的分析师(和其他从业人员)都是很少的。
总 体而言,在公司内部做分析师对商业洞察力要求更高一些,尤其是在领先的公司内部做分析师,因为公司的管理层对业务已经非常了解,你对业务的洞察力要超过管 理层的预期才算合格。而市场研究机构的商业模式往往是为不太懂行业的企业和个人提供咨询服务,所以对商业洞察力的要求可能会相对较低。
2.人脉和圈子。
这一点对在市场研究机构做分析师的童鞋更为重要。没有深厚的人脉,分析师的很多工作都没法开展(比如信息收集等等),在行业里的影响力也出不去,最终难以成为一个优秀的分析师。
对在企业里做分析师的童鞋而言,也要在自己的公司里有一个圈子,这样在开展研究的时候往往事半功倍。
3.产品爱好者。
这可能是互联网行业分析师和其他行业分析不一样的地方。互联网行业总体而言还是一个产品为王、用户为王的行业,对产品的热爱会让你更准确的判断行业的走势,如果你不热爱产品,不分析用户,只是人云亦云,是不可能做出出色的报告的。
4.其他。
比较好的演讲能力,撰写PPT的技巧。
另外,要成为一名好的分析师需要能调动很多资源,如果你能本着一种很好的助人和服务意识,能够整合已有的资源,尽量的去帮助这些值得你帮助的人,然后去发展更多的资源并形成良性循环,你的工作就会非常的得心应手。
我感觉互联网行业的分析师还需要一些特质,比如对用户体验和产品的把握。
这 个问题还需要进一步细化,作为分析师要有自身的定位,是战略分 析、用户分析、运营分析、市场分析还是产品分析,不同的定位能力要求不一样,我说互联网分析师对产品分析可能有所倚重也是因为互联网企业的核心可能就是产 品,战略、商业模式等都附着于产品,很多互联网企业的成功源于一款产品的成功。当然,现在出现的平台化趋向导致互联网不再是一个个零散的产品,而是一个蛛 网似的局,这时以合纵连横为特征的竞合战略布局成为更高阶的分析对象,但是...且慢,颠覆这布局的敌人可能没有一个旅的军队,只是带着一把快刀,白光一 闪,直插你心脏,所以即使你定位为战略分析师,也万万不能失去对用户体验、产品的感觉。
最终,一个理想的互联网分析师必须洞察人性...所谓人性,难道不就体现在一个个小小的动作中么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16