京公网安备 11010802034615号
经营许可证编号:京B2-20210330
成为一名合格的互联网分析师必须的条件
先反推来看,分析师到底是干什么用的?
个人理解,分析的目的和价值,是为了决策。
决策又分很多,是发掘市场服务投资,还是分析对手竞争策略,抑或发现新趋势储备前沿技术,还是具体到数据挖掘协助运营。 不同重点,可能对分析师能力经验和知识结构、人格素养要求都侧重不同。
从核心能力来看, 一是商业洞察力, 二是个人的组织影响力。
什么人有深刻的洞察力?这命题又挺大。是否掌握行业规律、产业格局、技术发展趋势、 商业竞争要素这些宏观和结构性知识和案例就可以?但如果没有细致对产品设计、技术资源投入、运营手段、研发管理这些生产层面经验和项目储备,又会导致想法和逻辑不严谨或难以落地。
组织影响力? 通常中大型公司才会出现分析师这样的职位。 没有soft skill、演讲能力, 没有政治素养和一定的个人魅力,就没法帮助分析结论推导决策的过程。
还 有一点,互联网产品和传统行业产品的一个本质区别,是用户驱动的高速变更迭代的产品。对于用户细分人群画像分析和需求挖掘、预测能力,也是互联网分析师水 平差异的重要表现。有一本书叫《小趋势》,谈美国总统竞选时,分析师如何针对细分人群的用户特征和心理动机制定策略,就是一个鲜活的案例。
这个问题有点大也有点模糊。
互联网分析师是一个很宽泛的概念,大致分为三种:一是在市场/行业研究机构做分析师,二是在大的公司战略部做分析师,三是在投资机构(VC/投行)做分析师。
限于我个人的经验,主要谈一谈前两种。
先明确一个点,互联网分析师的产品是报告(或观点),判断一个互联网分析师好坏的唯一标准就是:是否能产出高价值的报告(或观点)。
市场研究机构分析师最主要的工作是撰写行业研究报告,而行业研究报告的最主要功能个人觉得是:(1)在对行业现状和趋势充分分析的基础上,准确判断业务吸引力(要不要做和做什么);(2)研究各个环节的关键成功要素供企业经营参考(做什么)。
公司战略部的分析师有一部分职能也是撰写行业研究报告,但是在这个基础上,还要结合公司的资源和优劣势制定商业策略。
总体而言,个人觉得一个好的互联网分析师需要从如下几个方面努力:
1.商业洞察力。
能 够准确判断行业走势,能够找到新的机会,能够抓住业务关键点...培养商业洞察力的基础是具备丰富的行业知识(包括市场、技术、产品甚至关键人员等等), 熟练掌握行业分析的一些方法,但在这个基础之上还要靠个人的不断总结和领悟——因为做行业分析往往不是按照某个固定的流程解决某个确定的问题,而是首先需 要分析师去提出很有价值解决的问题并解决他,而提出问题对商业洞察力的要求是很高的。据我了解,有深刻商业洞察力的分析师(和其他从业人员)都是很少的。
总 体而言,在公司内部做分析师对商业洞察力要求更高一些,尤其是在领先的公司内部做分析师,因为公司的管理层对业务已经非常了解,你对业务的洞察力要超过管 理层的预期才算合格。而市场研究机构的商业模式往往是为不太懂行业的企业和个人提供咨询服务,所以对商业洞察力的要求可能会相对较低。
2.人脉和圈子。
这一点对在市场研究机构做分析师的童鞋更为重要。没有深厚的人脉,分析师的很多工作都没法开展(比如信息收集等等),在行业里的影响力也出不去,最终难以成为一个优秀的分析师。
对在企业里做分析师的童鞋而言,也要在自己的公司里有一个圈子,这样在开展研究的时候往往事半功倍。
3.产品爱好者。
这可能是互联网行业分析师和其他行业分析不一样的地方。互联网行业总体而言还是一个产品为王、用户为王的行业,对产品的热爱会让你更准确的判断行业的走势,如果你不热爱产品,不分析用户,只是人云亦云,是不可能做出出色的报告的。
4.其他。
比较好的演讲能力,撰写PPT的技巧。
另外,要成为一名好的分析师需要能调动很多资源,如果你能本着一种很好的助人和服务意识,能够整合已有的资源,尽量的去帮助这些值得你帮助的人,然后去发展更多的资源并形成良性循环,你的工作就会非常的得心应手。
我感觉互联网行业的分析师还需要一些特质,比如对用户体验和产品的把握。
这 个问题还需要进一步细化,作为分析师要有自身的定位,是战略分 析、用户分析、运营分析、市场分析还是产品分析,不同的定位能力要求不一样,我说互联网分析师对产品分析可能有所倚重也是因为互联网企业的核心可能就是产 品,战略、商业模式等都附着于产品,很多互联网企业的成功源于一款产品的成功。当然,现在出现的平台化趋向导致互联网不再是一个个零散的产品,而是一个蛛 网似的局,这时以合纵连横为特征的竞合战略布局成为更高阶的分析对象,但是...且慢,颠覆这布局的敌人可能没有一个旅的军队,只是带着一把快刀,白光一 闪,直插你心脏,所以即使你定位为战略分析师,也万万不能失去对用户体验、产品的感觉。
最终,一个理想的互联网分析师必须洞察人性...所谓人性,难道不就体现在一个个小小的动作中么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29