
13招神技 让你在数据科学和数据分析工作中脱颖而出
简介:我有幸在很早参与了一个大数据科学项目,我非常喜欢其中的工作,甚至我意识到我的努力可以增加一些公司的价值。
然而,可悲的是,只有不到30%的数据科学项目最终实施了。我备受打击的意识到我的努力被浪费了。但是,我不是唯一的一个。几乎,每一个分析家都有同样失望的感觉。
即使在今天,数据科学行业面临的真正挑战是企业和分析人员之间缺乏协调。令我惊讶的是,我甚至注意到,这些人更喜欢坐在同一个办公室里坐在一起。
如果这两种技能的专业人士很普遍,我们就可以看到一个实施可能性更高的项目。在过去的四年里,我花了很多时间思考使一个项目成功的最佳实践。
我发现,如果有个对症的人坐在你的办公室,他能明确定义业务问题,并且诱导你突破思维定式,你将突破管窥限制。
因此,你在数据科学/分析工作中正在取得成功时,我建议你遵循下面提到的提示。这些都是尝试和测试的总结。为了获得最大的利益,我建议你遵守。我从他们身上已经受益。现在轮到你了!
以下是优先顺序
我知道你是一个数据分析师,所有你关心的都是数字。但是,一个令人敬畏的业务分析师和一般数据分析师有哪些不同呢?那就是他们对业务理解的潜质。你应该在开始你的第一个项目之前试着去了解企业。下面是一些你应该需要探索的东西:
如果你能回答这些问题,你对开始你的第一个项目已入门。
我观察到,分析师瞄准的甚至不是问题的主要目标。例如,让我们想象一下,我们发现,一个客户在拨打客户服务电话,谈话更多的是他在放弃服务。
现在,如果我们开始解决降低客户服务的呼叫数量的方法,我们可能不会降低流失率。相反,在你没有过失的情况下,我已经看到你客户较高的不满。这可能是一个简单的致命伤,你会拒绝进入这种简单的陷阱。但是,现实生活中的问题几乎难以发现。我想说,解决一个明确的问题要比找到解决问题的正确方法要容易的多。
这个可能是对分析师来说是非常容易解决的一个难题,但也是最容易导致失败的一个陷阱。让我用几个简单例子来做解释。
假设,你将要建一个营销活动的目标模型,你将选择哪个指标来评估你的模型:
在这种模型中,我常会选择KS正态分布曲线。等分提升指数只能给你在某个特定等分的评估,因此,它可能不会帮助我们找到巨大的目标人群和突破点。AUC-ROC曲线可以对整体人群评估,不适合在这个模型中。对数似然数可能是最大的最不适合这个模型,因为所有的事情是顺序排名而不是实际概率。
我已经看到这在许多行业是最大的问题。当今的商界领袖在他们所做的一切中寻求创新。
要真正的创新,您可以遵从发散-收敛的系统方法。在某种程度上,你需要对将要到来的进行发散思维,通过这种方法你得到更多的经验。我们的意思是想所有的可能方式,在可行性、时间发展、传统方式等各个方面破解难题。但是,你确信你已经发散到足够大了,你需要立即应用所有的约束条件来缩小方法。
分析正在使用在每一个可能的行业中。但是,为什么我们不能超越传统的方法,在其他行业寻找解决方案?
例如,一个应用于电子商务行业的推荐视频解决方案可以像Analytics Vidhya公司在博客门户使用一样好。唯一的方法就是与其他行业的人进行互动,通过分析来学习他们奋斗的成果。
从你的分析事业的第一天起,你应该与业务伙伴进行互动。我常常会看到一件一般会出错的事,分析师和业务伙伴就解决方案交流很不频繁,业务合作伙伴想远离技术细节从业务角度进行分析,这确实对项目不利。在模型实施和模型建模中保持持续的互动是非常重要的。
我知道你是一个数据分析师,喜欢用复杂的想法让业务人士迷惑。和业务人士使用如此复杂的讨论可以帮助你快速结束眼前的谈话,但会降低成功实施的可能性
以下是你需要做的:一旦你输出一个指标,尽量找出一个简单的方式,可以让企业更容易理解。让我给你这个方法的一个例子。我们试图找出那些一旦有机会,就可以做的非常好的代理商,我们想出不同层次的人群和他们预期的表现。然而,我们不得不选择一个可以区分人群组合的方式。我们所做的很简单:我们实施了差别收费策略,以改变申请人的组合和我们群体的组合。
目标指标永远不是你分析的最终产品。它只是一个业务组件!因此,你需要在使你的想法更清晰和更有效而投入大量的精力。尝试学习能与你的听众更好连接在一起的术语,思考你的商业伙伴想寻找什么,假象你是他们的鞋子。
我最近开始为我的一个项目学习中文。整个项目都非常简单,但我发现,即使有一个强大的模型,在销售它的时候我犯了个错误。原因是我对他们内部讨论的理解一篇空白。使用你的听众的语言是非常重要的。我看到非常简单的模型被赞赏和最聪明的模型被拒绝。唯一的区别是分析师在介绍他们的模型时使用的业务语言。
最后来的但不是最不重要的,一旦每个人都相信你的模型的有效性,会发生什么。你的工作还没有完成。建立每月项目跟进计划,了解项目如何实施,是否在正常的进行。
随着时间的发展,你会意识到一件事情:分析行业的变化非常快。然而,如果你是喜欢待在自己舒适区的一个人,你很快就会发现你的技能都过时了。我发现一个非常有用的方法就是参与数据类的科学竞赛,并与同行竞争/学习。 Kaggle 和Analytics Vidhya就是一些非常好的比赛。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15