京公网安备 11010802034615号
经营许可证编号:京B2-20210330
13招神技 让你在数据科学和数据分析工作中脱颖而出
简介:我有幸在很早参与了一个大数据科学项目,我非常喜欢其中的工作,甚至我意识到我的努力可以增加一些公司的价值。
然而,可悲的是,只有不到30%的数据科学项目最终实施了。我备受打击的意识到我的努力被浪费了。但是,我不是唯一的一个。几乎,每一个分析家都有同样失望的感觉。
即使在今天,数据科学行业面临的真正挑战是企业和分析人员之间缺乏协调。令我惊讶的是,我甚至注意到,这些人更喜欢坐在同一个办公室里坐在一起。
如果这两种技能的专业人士很普遍,我们就可以看到一个实施可能性更高的项目。在过去的四年里,我花了很多时间思考使一个项目成功的最佳实践。
我发现,如果有个对症的人坐在你的办公室,他能明确定义业务问题,并且诱导你突破思维定式,你将突破管窥限制。
因此,你在数据科学/分析工作中正在取得成功时,我建议你遵循下面提到的提示。这些都是尝试和测试的总结。为了获得最大的利益,我建议你遵守。我从他们身上已经受益。现在轮到你了!
以下是优先顺序
我知道你是一个数据分析师,所有你关心的都是数字。但是,一个令人敬畏的业务分析师和一般数据分析师有哪些不同呢?那就是他们对业务理解的潜质。你应该在开始你的第一个项目之前试着去了解企业。下面是一些你应该需要探索的东西:
如果你能回答这些问题,你对开始你的第一个项目已入门。
我观察到,分析师瞄准的甚至不是问题的主要目标。例如,让我们想象一下,我们发现,一个客户在拨打客户服务电话,谈话更多的是他在放弃服务。
现在,如果我们开始解决降低客户服务的呼叫数量的方法,我们可能不会降低流失率。相反,在你没有过失的情况下,我已经看到你客户较高的不满。这可能是一个简单的致命伤,你会拒绝进入这种简单的陷阱。但是,现实生活中的问题几乎难以发现。我想说,解决一个明确的问题要比找到解决问题的正确方法要容易的多。
这个可能是对分析师来说是非常容易解决的一个难题,但也是最容易导致失败的一个陷阱。让我用几个简单例子来做解释。
假设,你将要建一个营销活动的目标模型,你将选择哪个指标来评估你的模型:
在这种模型中,我常会选择KS正态分布曲线。等分提升指数只能给你在某个特定等分的评估,因此,它可能不会帮助我们找到巨大的目标人群和突破点。AUC-ROC曲线可以对整体人群评估,不适合在这个模型中。对数似然数可能是最大的最不适合这个模型,因为所有的事情是顺序排名而不是实际概率。
我已经看到这在许多行业是最大的问题。当今的商界领袖在他们所做的一切中寻求创新。
要真正的创新,您可以遵从发散-收敛的系统方法。在某种程度上,你需要对将要到来的进行发散思维,通过这种方法你得到更多的经验。我们的意思是想所有的可能方式,在可行性、时间发展、传统方式等各个方面破解难题。但是,你确信你已经发散到足够大了,你需要立即应用所有的约束条件来缩小方法。
分析正在使用在每一个可能的行业中。但是,为什么我们不能超越传统的方法,在其他行业寻找解决方案?
例如,一个应用于电子商务行业的推荐视频解决方案可以像Analytics Vidhya公司在博客门户使用一样好。唯一的方法就是与其他行业的人进行互动,通过分析来学习他们奋斗的成果。
从你的分析事业的第一天起,你应该与业务伙伴进行互动。我常常会看到一件一般会出错的事,分析师和业务伙伴就解决方案交流很不频繁,业务合作伙伴想远离技术细节从业务角度进行分析,这确实对项目不利。在模型实施和模型建模中保持持续的互动是非常重要的。
我知道你是一个数据分析师,喜欢用复杂的想法让业务人士迷惑。和业务人士使用如此复杂的讨论可以帮助你快速结束眼前的谈话,但会降低成功实施的可能性
以下是你需要做的:一旦你输出一个指标,尽量找出一个简单的方式,可以让企业更容易理解。让我给你这个方法的一个例子。我们试图找出那些一旦有机会,就可以做的非常好的代理商,我们想出不同层次的人群和他们预期的表现。然而,我们不得不选择一个可以区分人群组合的方式。我们所做的很简单:我们实施了差别收费策略,以改变申请人的组合和我们群体的组合。
目标指标永远不是你分析的最终产品。它只是一个业务组件!因此,你需要在使你的想法更清晰和更有效而投入大量的精力。尝试学习能与你的听众更好连接在一起的术语,思考你的商业伙伴想寻找什么,假象你是他们的鞋子。
我最近开始为我的一个项目学习中文。整个项目都非常简单,但我发现,即使有一个强大的模型,在销售它的时候我犯了个错误。原因是我对他们内部讨论的理解一篇空白。使用你的听众的语言是非常重要的。我看到非常简单的模型被赞赏和最聪明的模型被拒绝。唯一的区别是分析师在介绍他们的模型时使用的业务语言。
最后来的但不是最不重要的,一旦每个人都相信你的模型的有效性,会发生什么。你的工作还没有完成。建立每月项目跟进计划,了解项目如何实施,是否在正常的进行。
随着时间的发展,你会意识到一件事情:分析行业的变化非常快。然而,如果你是喜欢待在自己舒适区的一个人,你很快就会发现你的技能都过时了。我发现一个非常有用的方法就是参与数据类的科学竞赛,并与同行竞争/学习。 Kaggle 和Analytics Vidhya就是一些非常好的比赛。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29