京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用大数据来提升法律执行力
在时代快速发展的今天,很多行业开始看到通过分析、可视化的方法处理那些不断更新的数据,可以得到现实的利益。与此同时,相对而言较为保守的行业也渐渐开始觉醒,并在大数据的浪潮中寻找属于自己的方向。其中一个典型的行业为法律行业,例如:司法机关、律师事务所等。
但是现在法律行业在面对大数据的时还存在着很多问题:法院和律师事务所可以在大数据中得到什么?大数据如何帮助法院克服常见的程序性问题,例如业务负担过重、时间延误和成本过高?如何处理实验中的敏感性数据?法律执行中的大数据的内在意义是什么?对于法律行业来说,大数据是一个新的挑战并存在着很多问题,不过现在已经有一些好的例子表现出大数据对于法律行业的积极作用。那么现在就让我们来深入探讨一下这个问题。
信息周刊早期曾对来自亚特兰大的精品律师事务所“Thomas Horstemeyer”作为案例进行解读。此律师事务所有60名雇员并实行一些拥有自己知识产权的方法。与传统律师事务所不同,他们并没有将所有案件进行档案纸质收藏,而是将这些信息全部上传到私人云端中。他们在事务所中拥有很多储存空间网络(这些空间有十几TB那么大),并在这些数据的基础上进行数据分析、挖掘,同时他们还以此为基础开发了一个纯粹的虚拟环境,并升级防火墙、增加负载均衡、虚拟化服务器以及使用网络语音(VoIP)取代了电话系统。此外,因为不再需要使用旧的方法来保存文件,律师事务所节省了很大的一笔开支。
尽管这个案例看起来和大数据并没有关系,但是这对于那些拥有大量纸质文件的法律行业来说只是一个开始。当所有档案数据化后,需要做的就是对可利用的数据进行更快的分析,并可以在旧的案件记录中更快更好的挖掘出可以信息以进行二次利用。
大数据在法律行业中有着很多的应用。首先,它可以大大的节约成本并提高执行效率。当大量的案件记录以及相关数据得到直接快速的分析时,这些案件中的一些相关点便可以发现。为了达到此目的,那么律师事务所需要学会如何正确的收集、储存、编目和组织所有的数据,这是律师事务所可以在这些数据中得到利益的保证。如今,计算机的强大计算能力以及低廉的成本使我们可以保存我们想要的任何数据。这可能导致在未来某些情况下产生一些完全新的见解,并让法官和检察官回答现在完全无法回答的问题。
律师事务所可以在一些情况下使用特定的算法进行预测,即基于以往的相似案件的法律处理结果,来预测现在新的案件可能会得到怎么的处理。在加利福利亚州的一个小型的律师事务所“Dummit, Buchholz & Trapp”就是使用经过LexisNexis改进的算法技术,可以在20分钟内预测某一案件是否值得受理,而同样的事情,在以前却需要20天。
第二,大数据可以增加法律行业的透明度,这让法官和客户都可以从中受益。例如一个名为TyMetrix LegalView Analytics的工具可以大量收集由法律支出的数十亿百亿费用产生的发票。这样,对于律师事务所来说,可以简单的让自己与行业标准进行比较,从而为某项业务设定合适的价格。另一方面,诸如Sky Analytics之类的工具可以帮助公司减少法律支出,控制司法成本,这些工具可以帮助公司建立法律支出上的一种无与伦比的宏观视角,并在节省司法支出方面尽可能的提出具体的建议。
同样,消费者也会因为法律行业数据的公开民主透明化而获利。一款名为RateDriver的应用程序,可以让美国51个州的使用者迅速确定自己需要为律师所付出的费用。
第三点,大数据可以成为法庭上的一种新的证据。许多美国案例中表现出,由公共数据集收集分析得到的结果在一定情况下可以被认定为证据。作为一个数据驱动行业,法律行业的大部分数据依然保存在线下,保存在纸张中,但是现在这个行业正在稳步向信息时代迈进,并利用其中大量的新机遇改善自己的工作。当数据全部得以数字化时,那么对于法律行业就可以很容易的联系到其他的公开数据,并以此产生一些新的碰撞。正如数据公司LexisNexis的首席构架师Ian Koenig所说的那样:“这可以让我在海底中捞到属于我的那根针”。
最后一点,大数据也开始出现在了律师事务所的HR部门。正如早期的一则新闻中讨论的那样,大数据可以让人力资源经理整合潜在新雇员的所有信息数据,并估计其在某次评估中的可能表现,这可以帮助这些事务所找到那些真正符合他们要求的雇员。
现在的市场上已经出现了一些完全专注于法律行业的大数据开发小组。其中一个典型的例子是总部位于圣路易斯的Juristat,现在其在美国法律行业中起着特殊的意义。Juristat为法官和律师事务所提供可操作的分析,并帮助他们优化诉讼策略、营销政策以及内部运作。他们甚至可以做的更多,例如Juristat的一项工具可以预测出流感的爆发对陪审团的裁决产生怎样的影响。
大数据在法律行业还处于刚刚起步的阶段,还有很长的道路要走。律师事务所等法律行业在处理问题的时候往往需要较为可信的信息,但是对于信息数字化中存在的隐私以及安全问题还亟待解决,所以很多人对于将他们的信息进行共享还处于观望甚至排斥的态度。对于法律行业来讲,大数据的兴起既是危机也是挑战,但是说到底,前进的唯一道理还是信息的数字化。一本名为《法律行业中的大数据》的书为法律行业起一个很好的头,它对大数据如何对法律行业产生影响进行了由内而外的深入解读并提供了实际可行的建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11