
企业大数据创新不容忽视的五大重要趋势
“大数据”已经不仅仅是一个时髦用语,利用大数据分析正在成为越来越现实的问题,甚至IBM都已经宣布投入10亿美金发展PowerLinux系统以支持其大数据战略。
从企业规模来看,利用大数据更有优势的是大型企业。根据研究机构Forrester Research对大量大型企业的调查数据显示,平均每家企业产生的数据总量约为非结构化数据50TB、半结构化数据2TB、结构化数据12TB。
但Forrester Research首席分析师Bryan Wang同时指出,大型企业大数据综合利用率仅为12%左右,“企业花了大量的金钱在存储上”——而不是分析。
目前使用大数据技术的企业占比约为20%,另有37%企业正在筹划大数据项目,希望通过大数据分析的威力获得更高的企业洞察。那么,大数据在大型企业重要项目应当如何应用呢?这里是大型企业大数据创新的五大方向。
1 ) 混合数据云。混合数据云是一个值得强调的话题,因为大型企业不可能放弃现有的结构化的数据基础设施。从Oracle,IBM和微软的系统的结构化数据正在支撑大多数大公司的运作。数据基础设施技术执行的目标是将这些现有的系统融入混合系统,同时吸收非结构化的数据和外部数据。
然而,传统的厂商要做到这一点可能不太容易。虽然现有的系统将保持,但那些传统厂商的技术可能局限在现有的项目,而企业新的投资更可能流向新的供应商和新的平台。
StubHub公司有25种结构化和非结构化数据源的数据网络。StubHub首席数据架构师Sastry Malladi表示,使用开源产品对于避免专有架构的锁定非常重要。“眼下最重要的创新,是如何创建一个混合的数据系统,”Malladi说。
2 ) 移动性推动大数据投资。移动平台和它们的位置、通信和便携性提出了一种客户平台客户定制的大数据创新。在线健康网站MapMy Fitness开始记录用户的运行路线,并已经扩展到各种各样的健身活动,以及个人健康监测。
MapMy Fitness副总裁Matt McLure已经看到公司增长到19万用户,并开发出一种混合私有云和公共云的基础设施,以支持用户的行为,如新增的夏季骑自行车的人和健身爱好者。“我们是在健康和关连健身生态系统的中心。”McLure说。额外的健康和健身监控相关的扩展要求,驱动该公司使用像 Facebook和谷歌等开发的数据技术。
3 ) 大数据可以围绕和增强现有的应用程序。StubHub开始只作为一个体育和娱乐项目的票券交易平台。但该公司目前正在采取一个更广泛的角度,一个项目周围的所有活动,包括社会评论,住宿,餐饮和交通服务。这些社交网络服务驱动捕获、分析大量的数据的混合模型,并驱动推荐引擎。传统的交易系统的设计根本就没有考虑这种类型的用户输入。
4 ) 物联网将让当前的大数据项目看起来像小东西(small stuff)。美国商业智能厂商SAS高级主管Paul Bachteal指出,当你开始考虑将所有的数据引入组织,将物联网从概念变成现实,构建采集,存储,分析和创建预测分析的系统,需要的技能是供不应求的,客户和供应商将不得不展开员工技能的培训工作。
Bachteal以铁路机车为例,表示一旦配备传感器并连接到一个数据分析系统,客户将能够更准确地预测部件的磨损,从而可以防止设备故障。
5 ) 大创新来到数据频谱的前端。沃尔玛正在考虑使用crowd sourcing(众包)来设置产品价格和选择产品说明配图。沃尔玛实验室高级工程总监Digvijay Lamba表示,在决策过程的前端使用技术如crowd sourcing,完成大数据的频谱。
现有的大数据系统擅长于分析巨大的数据池,但只有在数据进入该系统的时候。crowd sourcing代表了一种方式,把额外的数据添加到大数据流程的前端,利于提高分析结果。Lamba说:“我们需要扩展系统的前端。”
大数据已经不仅仅是一个流行的词汇,但创建大数据系统需要思考决策系统的新途径,这现在刚刚进入市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01