
如何利用SAS进行随机抽样
利用SAS进行随机抽样
在构建数据挖掘模型过程中,有时我们无法对所有的整体进行全面研究,有时我们希望将整体划分为训练集、验证集、测试集三份用于不同目的的数据集,甚至在K-折交叉验证中,我们需要把样本随机的划分为K份数据子集。本文介绍SAS的SURVEYSELECT过程和RANUNI函数在随机抽样方面的应用。
0、读入数据集,并对数据集按分层变量进行排序。本文数据集采用students.txt:
* 从students.txt读入文件到数据集students;
DATA students;
INFILE ‘C:\students.txt’;
INPUT id class $ gender $ math english history chem phys literat;
RUN;
* 查看数据集内容;
PROC PRINT DATA = students;
TITLE ‘Students”s class gender & scores’;
RUN;
* 对二维列联表(班级、性别)进行频数统计;
PROC FREQ DATA = students;
TABLES class * gender /NOPERCENT NOROW NOCOL;
RUN;
* 首先对数据集按分层变量进行排序;
PROC SORT DATA = students;
BY class gender;
RUN;
1、利用SURVEYSELECT过程进行等比例分层抽样
* 利用SURVEYSELECT过程对数据集进行等比例分层抽样;
PROC SURVEYSELECT DATA = students out = samp1 method = srs samprate = .5 seed = 9876;
STRATA class gender;
RUN;
* 查看分层抽样的结果;
PROC FREQ DATA = samp1;
TABLES class * gender /NOPERCENT NOROW NOCOL;
RUN;
2、利用SURVEYSELECT过程进行不等比例分层抽样
* 利用SURVEYSELECT过程对数据集进行等不比例分层抽样;
PROC SURVEYSELECT DATA = students out = samp2 method = srs samprate = (.4 .6 .4 .6 .4 .6)seed = 9876;
STRATA class gender;
RUN;
* 查看分层抽样的结果;
PROC FREQ DATA = samp2;
TABLES class * gender /NOPERCENT NOROW NOCOL;
RUN;
3、利用SURVEYSELECT过程根据抽样数量进行分层抽样
* 利用SURVEYSELECT过程对数据集进行指定数量的分层抽样;
PROC SURVEYSELECT DATA = students out = samp3 method = srs n = (8 4 6 8 5 7) seed =9876;
STRATA class gender;
RUN;
* 查看分层抽样的结果;
PROC FREQ DATA = samp3;
TABLES class * gender /NOPERCENT NOROW NOCOL;
RUN;
4、利用随机数函数RANUNI对数据集进行粗略划分
* 利用RANUNI函数将数据集粗略的划分为N=5份;
DATA s1 s2 s3 s4 s5;
SET students;
r = RANUNI(991889);
IF r<0.2 THEN OUTPUT s1;
ELSE IF r<0.4 THEN OUTPUT s2;
ELSE IF r<0.6 THEN OUTPUT s3;
ELSE IF r<0.8 THEN OUTPUT s4;
ELSE OUTPUT s5;
DROP r;
RUN;
5、利用随机数函数RANUNI对数据集进行精确划分
* 根据数据集创建视图students_v,增加随机数列;
DATA students_v /view=students_v;
SET students;
srt = RANUNI(999890);
RUN;
* 按照随机数列对数据集进行排序,创建数据集students_srt,删除随机数列;
PROC SORT DATA = students_v OUT = students_srt(DROP = srt);
BY srt;
RUN;
* 将数据集精确地划分为N=5份;
DATA s1 s2 s3 s4 s5;
RETAIN per ;
SET students_srt NOBS= total;
IF _N_ = 1 THEN per = INT(total/5);
if _N_<= per then output s1;
ELSE IF _N_<= 2 * per THEN OUTPUT s2;
ELSE IF _N_<= 3 * per THEN OUTPUT s3;
ELSE IF _N_<= 4 * per THEN OUTPUT s4;
ELSE OUTPUT s5;
DROP per;
RUN;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22