
如何利用SAS进行随机抽样
利用SAS进行随机抽样
在构建数据挖掘模型过程中,有时我们无法对所有的整体进行全面研究,有时我们希望将整体划分为训练集、验证集、测试集三份用于不同目的的数据集,甚至在K-折交叉验证中,我们需要把样本随机的划分为K份数据子集。本文介绍SAS的SURVEYSELECT过程和RANUNI函数在随机抽样方面的应用。
0、读入数据集,并对数据集按分层变量进行排序。本文数据集采用students.txt:
* 从students.txt读入文件到数据集students;
DATA students;
INFILE ‘C:\students.txt’;
INPUT id class $ gender $ math english history chem phys literat;
RUN;
* 查看数据集内容;
PROC PRINT DATA = students;
TITLE ‘Students”s class gender & scores’;
RUN;
* 对二维列联表(班级、性别)进行频数统计;
PROC FREQ DATA = students;
TABLES class * gender /NOPERCENT NOROW NOCOL;
RUN;
* 首先对数据集按分层变量进行排序;
PROC SORT DATA = students;
BY class gender;
RUN;
1、利用SURVEYSELECT过程进行等比例分层抽样
* 利用SURVEYSELECT过程对数据集进行等比例分层抽样;
PROC SURVEYSELECT DATA = students out = samp1 method = srs samprate = .5 seed = 9876;
STRATA class gender;
RUN;
* 查看分层抽样的结果;
PROC FREQ DATA = samp1;
TABLES class * gender /NOPERCENT NOROW NOCOL;
RUN;
2、利用SURVEYSELECT过程进行不等比例分层抽样
* 利用SURVEYSELECT过程对数据集进行等不比例分层抽样;
PROC SURVEYSELECT DATA = students out = samp2 method = srs samprate = (.4 .6 .4 .6 .4 .6)seed = 9876;
STRATA class gender;
RUN;
* 查看分层抽样的结果;
PROC FREQ DATA = samp2;
TABLES class * gender /NOPERCENT NOROW NOCOL;
RUN;
3、利用SURVEYSELECT过程根据抽样数量进行分层抽样
* 利用SURVEYSELECT过程对数据集进行指定数量的分层抽样;
PROC SURVEYSELECT DATA = students out = samp3 method = srs n = (8 4 6 8 5 7) seed =9876;
STRATA class gender;
RUN;
* 查看分层抽样的结果;
PROC FREQ DATA = samp3;
TABLES class * gender /NOPERCENT NOROW NOCOL;
RUN;
4、利用随机数函数RANUNI对数据集进行粗略划分
* 利用RANUNI函数将数据集粗略的划分为N=5份;
DATA s1 s2 s3 s4 s5;
SET students;
r = RANUNI(991889);
IF r<0.2 THEN OUTPUT s1;
ELSE IF r<0.4 THEN OUTPUT s2;
ELSE IF r<0.6 THEN OUTPUT s3;
ELSE IF r<0.8 THEN OUTPUT s4;
ELSE OUTPUT s5;
DROP r;
RUN;
5、利用随机数函数RANUNI对数据集进行精确划分
* 根据数据集创建视图students_v,增加随机数列;
DATA students_v /view=students_v;
SET students;
srt = RANUNI(999890);
RUN;
* 按照随机数列对数据集进行排序,创建数据集students_srt,删除随机数列;
PROC SORT DATA = students_v OUT = students_srt(DROP = srt);
BY srt;
RUN;
* 将数据集精确地划分为N=5份;
DATA s1 s2 s3 s4 s5;
RETAIN per ;
SET students_srt NOBS= total;
IF _N_ = 1 THEN per = INT(total/5);
if _N_<= per then output s1;
ELSE IF _N_<= 2 * per THEN OUTPUT s2;
ELSE IF _N_<= 3 * per THEN OUTPUT s3;
ELSE IF _N_<= 4 * per THEN OUTPUT s4;
ELSE OUTPUT s5;
DROP per;
RUN;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29