
大数据路线图:大数据如何改变商业
如果说2012年是大数据概念为人所知、引人瞩目、小试牛刀的一年,那么2013年大数据将会实现产品部署,早期投资获得回报,一小部分的产业被颠覆。到了2014年,各种大数据项目和系统很可能成为标准配置,到处可见。
今年,大数据和云计算一起作为科技术语出现。大数据意味着非常多的事情,但是被援引的次数太多了,几乎失去了其本来的定义。大数据的定义通常和速率(数据移动得快),体积(数据规模庞大),和种类(非结构化和结构化的信息)三点有关。
大数据真的如人们所描述的那样吗?是的。对我来说,大数据代表了科技和商业的一致——也就是首席信息官们始终追求的圣杯(Holy Grail)——成为了一件顺理成章的事情。大数据项目从本质上来说和营收、风险利润是相关的。换句话说,信息科技和商业世界情不自禁地联合了起来。
显然我们正处在一个追捧大数据的阶段,我认为可以和1990年代末的Linux和2000年代初的开源软件运动相提并论。那时候Linux正要开始改变世界,和微软等厂商一较高下。从许多方面来说,Linux和开源软件(比如安卓)的确改变了一切。但是在行业变革的过程中发生了一个有趣的事情——开放软件成了每一个数据中心的标准配置,如今已经被认为是理所应当了。这场变革发生了,我们仅仅是不再谈论它而已。云计算也是一样。
大数据会遵循同样的发展路线。当然,会创造数百万个工作机会,相关人才也会变得有一点抢手。公司们也会用大数据升级各自的行业。随着Cloudera这样的创业公司成为新的红帽子(Red Hats),各家厂商的市场座次也逐渐明朗。
如下是我对大数据未来几年的展望。
2013年:2012年的试验项目成品化,每一个行业的垂直领域都会有一个成功的大数据案例。
2014年:在2013年成功经验和客户研究案例的基础上,一些行动快速的市场跟随者将进入大数据领域。各个行业都将遵循大数据的游戏规则。初期的回报看上去会很不错。公司的主要关注点在内部数据上,因为有很多东西可以挖掘。外部数据也很有用,但是这段时期不会有什么新进展。
2015年:在制定大数据计划时,公司们开始将目光投向外部数据。在2015年之前,消费者所面对的公司都在花费大部分时间用于研究外部信息。每一个分析师和数据仓库都将会有一个Hadoop计算簇和一个大数据层。像Hadoop这样的技术不再受人关注,因为这些技术始终非常重要,慢慢淡化进入软件栈。围绕大数据题材的整合并购开始加速。
2016年:数据驱动的决策代替了直觉和常识。这个时候公司们要开始仔细思考数据的使用,避免出现无意义的数据。公司会因为错误解读了数据而导致重大事故的发生。
2017年:云和大数据、数据仓库合并起来,成为了一项服务,“分析即服务”和“数据即服务”成为主流。很少有公司真正考虑创建自己的Hadoop计算簇进行整合工作。大数据基础设施即将实现。注意:2017年是这些大数据即服务为大众所普及的一个估算时间。大数据即服务的市场竞争在这个时间段正在进行,将会于不久涉及到关键的大范围用户群。
大数据在IT采购周期上又是怎样的情况呢?大数据项目需要有更多高级别的管理人员。分析如下:
首席信息官:大数据项目终于能让首席信息官解决一直以来的“我们一致吗?”问题。
首席财务官:将大数据分析作为控制成本、最大化利润的方式。潜在风险是公司有可能因为忽略人的因素而失去好的机会。
首席市场官:2012年,首席市场官成了IT采购的红人。不过这有点不太合理,因为首席市场官主要依赖外部数据和信号判断项目。
首席运营官,采购人员:大数据可以让存货、供应和制造过程自始至终都可以进行追踪。效率能够得到改进。
数据科学家:这部分员工越来越被看作是“首席”管理层的接班人。职场方面,数据高手想去哪家公司都行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11