
大数据如何发挥大价值
大数据时代,CIO的竞争优势从信息技术转变为围绕客户体验、数据分析、流程管理领域,让数据发挥大价值。
全球每秒钟发送2900万封电子邮件,推特上每天发布 5000万条消息;亚马逊每天产生 630万笔订单;Google每天需要处理24PB 的数据……
海量数据的处理,以及如何用数据创造更大的价值,给CIO们提出了更多的挑战。根据Valueresearch研究报告显示,大数据已经跃升为CIO关注度排名第四的技术与应用,并且还在持续提升中。
2013年9月4日,商业价值、ITValue和CommVault公司在北京联合举办了“大数据的大价值”的CIO沙龙。12位来自不同行业的CIO进行了精彩的分享和讨论。
业务需求引导数据分析
在一个家庭里,谁来主导旅游消费?谁来做旅游决策?
中青旅控股有限公司(下称“中青旅”)的IT部门和市场推广部联合成立了一个数据挖掘小组,在总裁助理林军的带领下,以业务需求出发用信息技术做数据挖掘,得出如下信息:在中国家庭里,旅游通常是太太来做决策;国内家庭客户策划旅游中,欧美游所需计划决策时间最长,其次是东南亚旅游,而国内游则是决策时间最短,经常会临时抱佛脚说走就走。于是,中青旅根据数据挖掘分析的结果,进行旅游产品策划和收益管理的调整,更能针对性地满足客户的需求和优化客户的体验,而且优化之后的旅游产品推广效果和盈利情况更佳。
中粮大悦城(下称“大悦城”)CIO张岩也表示,明晰业务需求才能更好地进行数据挖掘。大悦城进驻了数百家知名品牌商户,其内部系统的数据是纷繁复杂的:包括POS数据、客流的数据、商流的数据、会员的数据等等。如果从IT的角度进行分类管理、分析价值,各个业务部门的数据差异巨大,数据分析价值很低。但改由数据创造价值或者以大悦城整体商业价值来进行分析,数据分析更有价值 。
张岩带领数据分析团队,优先从商业的逻辑来考虑,对大悦城历年的销售数据进行系统梳理,建立了符合购物中心行业特色的数据分析体系。体系中包含了品牌商户、消费客群、项目收益3大系统模块,做到了从3大商业经营角度综合分析项目运转情况。得益于这套商业分析系统,朝阳大悦城帮助入驻的500多家商户,根据分析情况调整销售策略,实现了朝阳大悦城销售额年增长率近40%的高增长。
新东方教育科技集团信息管理部总监官冲认为,做数据分析和挖掘的人,一定得是懂业务的人。数据挖掘可以由外部人员来教授方法,但一定由内部人员自己实践。只有自己更了解自己的业务,能判断出哪类数据挖掘对企业有价值。其实,企业能用以分析的数据越全面,分析的结果就越接近于真实。大数据分析需要由业务需求为主导,这样企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各个细节相融合。
大数据有大价值
爱康国宾健康管理集团每年有200万人次的体检数据,这些数据蕴含着黄金般的价值。这些数据能从遗传、生活习惯、饮食等角度出发,对身体状况跟踪预测,对疾病早期预警,进行全方位的健康干预,进而对客户进行有偿或无偿服务,成为爱康国宾一片新的业务蓝海。
爱康国宾信息技术副总裁冯朝晖介绍,爱康国宾现在已经在为客户提供一些基础的健康管理服务,比如根据体检指标,分析客人的常见慢性病风险,并将慢性病的预防和保健常识通过短信定期推送给客人。未来这项业务还会和医院实现联动。
在张岩的主持下,大悦城搭建商业经营预测、管理体系:以数据挖掘方式,分析大悦城的整体商业变化规律。在数据挖掘中,大悦城并不是关注确切的销售数据,而是寻找发现在商业经营中销售变化的规律。同时,通过大数据技术筛选评估出近百个影响销售规律变化的主观因素,并通过大量的计算与验证,评估出每个影响因素的影响度指标,同时确定该影响因素相关的业务部门。最终,由近百个专项数据分析的结果,建立了全数据的大悦城经营模型(即虚拟大悦城)。从这个模型中,可以预测购物中心的经营状况,为招商、运营、推广各部门的工作提供了良好指导,并且成为管理层经营策略制定的重要依据。
CommVault中国区总经理徐永兴表示,做企业基本要考虑3个关键问题:1.增加收入;2.降低成本;3.控制风险。近30年来,企业将70%以上的资金和注意力都集中在前两项,而控制风险总是容易被忽视。CIO很多时候投入的大量的资金和精力都是在控制风险。其实,如果把数据管理做好,不但能帮CIO节省IT支出,甚至还能挖掘数据的价值,来更好地增加收入和降低成本,让CIO更具价值。
CIO如何从数据处理转型到数据业务?商业价值总经理万宁谈到,在社会信息化环境下,企业IT新趋势:1.CIO竞争优势从信息技术转变为围绕客户体验、数据分析、流程管理领域。2.相比业务流程设计,信息管理技术的重要性会更高。创建企业数字化业务模式,企业需要从技术角度、业务流程、人员角色、上升到企业企战略层面建立数字化企业。3.集中提供的应用和基础架构将会嵌入在业务服务之中,由企业共享的服务组织提供。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23