
大数据应用于传统行业 为仪器仪表带来转型机遇
如果要问11月有什么特殊的“节日”,你可能也会立马想到“双十一”。每年的这一天都是“剁手党”们的狂欢节,而背后支撑的快递产业更是放话今年将依赖大数据技术,减少以往出现的各项事故。在工信部发布“互联网+”行动战略后,大数据等新一代信息技术被广泛应用到传统产业,其实作为集聚高新技术的仪器仪表领域,也与大数据有着千丝万缕的联系。
所谓大数据,指的是所涉及的资料量规模巨大到无法透过现有的实物计量软件,在合理时间内达到采集、管理并整理出更有价值和意义的结论。这些数据包罗万象,不光包括人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。
因此,大数据也被称为是继云计算、物联网之后信息技术领域的又一次颠覆性变革。
从日常生活中的钟表、水表、电工仪表到科学研究领域的光谱分析仪、重力传感器,仪器仪表作为机械设备的灵魂,仪器仪表的本质就是数据的获取工具,被誉为大数据的”采集器“,自然拥有海量的“大数据”。然而大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理,通过“加工”实现数据的“增值”。大数据已经成为了新发明和新服务的源泉。
大数据平台的出现让仪器仪表企业开始意识到掌握这套采集数据可以做更多的事情,比如在生态环境监测领域实现智能化。今年7月,国务院办公厅发布了《生态环境监测网络建设方案》,对我国生态环境监测网络建设确立了清晰的行动纲领,环保部副部长翟青提出,完善生态环境监测网络需要数据的互联共享与大数据平台支撑,通过建立环保大数据中心,依靠大数据的海量数据存储与超高效处理能,整合相关部门内部分散数据形成庞大的数据中心体系,为生态环境保护决策、管理和执法提供数据支持。
据悉,各省市地区环保部门和监测中心均已全面启动监测网络的建设规划,例如广东省环境监测中心就已在2015年最新工作计划中,将大数据中心升级改造加入重点工作内容,并在此基础上实现各业务系统的统一整合与数据共享。
此外,也有越来越多的仪器仪表企业开始走上向一体化进程转型升级的道路,他们不再仅仅满足于提供计量的产品,更是升级到完善的解决方案,利用自身采集数据的便利,掌握用户的需求,从而提供出更丰富、全面、时效的服务,促进企业创新升级和产品应用推广。
这种新的变化趋势也同时在影响新的产品与服务设计理念和设计过程本身。为进一步掌握更全面的服务信息,抓住用户需求,未来的仪器仪表产品将在传统设计中融入数据服务界面,造就更适合更具有现代特征的新品。大数据将为人类的生活创造前所未有的可量化的维度,相信定会有更多的改变正蓄势待发。
如今,一个大规模生产、分享和应用数据的时代正在开启。正如“大数据时代的预言家”维克托教授所说,大数据的真实价值就像漂浮在海洋中的冰山,第一眼只能看到冰山的一角,绝大部分都隐藏在表面之下。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理,通过“加工”实现数据的“增值”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02