
数据分析实例:在一线城市的你,生活有多苦逼
曾经,“逃离北上广”成为年轻人中一个口号式的选择,但是,这个口号根本就没喊上多久,就没人响应了,因为,“逃离北上广”的人又都回来了。只有“北上广”加上深圳,才聚集着中国最多的资源、最好的机会,逃是逃不掉的。那么,只有“拼”,拼就拼一个星光灿烂。
滴滴打车与生鲜电商“本来生活网”对交通出行、回家吃饭这两件大事进行联合调查。数据显示,北京晚上20点以后回家的人群,占到了30%。综合各项标准,北上广深四个城市中,北京人仍然是最拼最累的。
北京城市面积最大,人均上班里程也最长,为19.2公里;其次为上海18.82公里;广州和深圳平均就要短一些,分别为15.16公里和13.97公里。拿北京而言,翻山越岭中关村,望眼欲穿CBD都不算事,光是上班路上就得非常拼。
整体来看,北京平均上班要52分钟,上海要51分钟,差异不是很大;广州需46分钟,深圳得40分钟。每天早晚高峰各堵1小时,从22岁到80岁,会有30624个小时,相当于10.48年,而这就少了许多对家人的陪伴。
这是四大城市晚间出行的热力图,看吧,颜色最重、范围最大的是北京吧?
热力图上看,夜22:00-23:00,上海、深圳、广州三个城市的打车地点集中在城市商区,而北京的集中打车地点遍布整个城市,每个角落的人都在以自己的方式奔忙。再细微观察北京,深夜打车的人,大CBD地区和大中关村地区仍然是最重要的区域,这两个地方集中了北京最多的大型公司、互联网公司。想一想,这些拖着疲惫身躯刚刚走出办公室的人们,他们那倦怠的身心吧。
4月,一项“吸血加班楼”的评选活动中,北京国贸地区、上海陆家嘴、深圳深南大道是这三个城市加班最集中的地区,果然到了晚上热力不减。快节奏的大时代,每分钟都在翻天覆地变化着。
数据显示,上海只有上午9:00出现一次早高峰,没有晚高峰和夜高峰,也说明上海人比较享受生活,而非工作。广州和深圳的出行波峰走向非常一致,下午高峰和晚高峰峰值也基本相同。而在北京,一天中三次高峰非常明显,夜高峰的订单量远远高于早高峰和晚高峰,加班到深夜才回家的人是上班族的大多数。
在程序员、工程师等聚齐的北京西二旗,到了晚上,只有26%的人能正常下班回家,18%的人22点回家。而凌晨以后,还有10%的人在忙着改变世界。
四个城市中,北京和上海人口数量相仿,但日均打车人数北京远远高于上海;深圳和广州人数差不多,打车人数深圳稍高于广州。北京城市过大,市中心到家的距离很远,紧张忙碌的城市中,分分秒秒都很可贵,这时候选择叫车回家最为方便。
互联网大数据
在晚回家人数的比例中,北京占到29.38%,广州居于其次为22.12%,深圳19.71%,而上海人的比例最少,这也与打车峰值分布相符合。
北上广深四个城市的上班族每天步履匆匆,繁忙的工作也在挤压着私人空间。四个城市中,北京人出行时间最长、加班时间最晚、加班范围最广、不能回家吃饭比例最高,各项指标都完胜上海、广州、深圳。
数据不能说明一切,每个人的生活体验更直观、更细致。在这个城市里打拼,你的前景将有更多的可能性,有梦想就有希望,有坚持就有价值。也许每年都有那么几个瞬间,虽然挤在人海中,仍觉得这是一座希望之城。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21