
数据分析实例:在一线城市的你,生活有多苦逼
曾经,“逃离北上广”成为年轻人中一个口号式的选择,但是,这个口号根本就没喊上多久,就没人响应了,因为,“逃离北上广”的人又都回来了。只有“北上广”加上深圳,才聚集着中国最多的资源、最好的机会,逃是逃不掉的。那么,只有“拼”,拼就拼一个星光灿烂。
滴滴打车与生鲜电商“本来生活网”对交通出行、回家吃饭这两件大事进行联合调查。数据显示,北京晚上20点以后回家的人群,占到了30%。综合各项标准,北上广深四个城市中,北京人仍然是最拼最累的。
北京城市面积最大,人均上班里程也最长,为19.2公里;其次为上海18.82公里;广州和深圳平均就要短一些,分别为15.16公里和13.97公里。拿北京而言,翻山越岭中关村,望眼欲穿CBD都不算事,光是上班路上就得非常拼。
整体来看,北京平均上班要52分钟,上海要51分钟,差异不是很大;广州需46分钟,深圳得40分钟。每天早晚高峰各堵1小时,从22岁到80岁,会有30624个小时,相当于10.48年,而这就少了许多对家人的陪伴。
这是四大城市晚间出行的热力图,看吧,颜色最重、范围最大的是北京吧?
热力图上看,夜22:00-23:00,上海、深圳、广州三个城市的打车地点集中在城市商区,而北京的集中打车地点遍布整个城市,每个角落的人都在以自己的方式奔忙。再细微观察北京,深夜打车的人,大CBD地区和大中关村地区仍然是最重要的区域,这两个地方集中了北京最多的大型公司、互联网公司。想一想,这些拖着疲惫身躯刚刚走出办公室的人们,他们那倦怠的身心吧。
4月,一项“吸血加班楼”的评选活动中,北京国贸地区、上海陆家嘴、深圳深南大道是这三个城市加班最集中的地区,果然到了晚上热力不减。快节奏的大时代,每分钟都在翻天覆地变化着。
数据显示,上海只有上午9:00出现一次早高峰,没有晚高峰和夜高峰,也说明上海人比较享受生活,而非工作。广州和深圳的出行波峰走向非常一致,下午高峰和晚高峰峰值也基本相同。而在北京,一天中三次高峰非常明显,夜高峰的订单量远远高于早高峰和晚高峰,加班到深夜才回家的人是上班族的大多数。
在程序员、工程师等聚齐的北京西二旗,到了晚上,只有26%的人能正常下班回家,18%的人22点回家。而凌晨以后,还有10%的人在忙着改变世界。
四个城市中,北京和上海人口数量相仿,但日均打车人数北京远远高于上海;深圳和广州人数差不多,打车人数深圳稍高于广州。北京城市过大,市中心到家的距离很远,紧张忙碌的城市中,分分秒秒都很可贵,这时候选择叫车回家最为方便。
互联网大数据
在晚回家人数的比例中,北京占到29.38%,广州居于其次为22.12%,深圳19.71%,而上海人的比例最少,这也与打车峰值分布相符合。
北上广深四个城市的上班族每天步履匆匆,繁忙的工作也在挤压着私人空间。四个城市中,北京人出行时间最长、加班时间最晚、加班范围最广、不能回家吃饭比例最高,各项指标都完胜上海、广州、深圳。
数据不能说明一切,每个人的生活体验更直观、更细致。在这个城市里打拼,你的前景将有更多的可能性,有梦想就有希望,有坚持就有价值。也许每年都有那么几个瞬间,虽然挤在人海中,仍觉得这是一座希望之城。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29