
大数据开启互联网电视大屏百亿市场
智能家居前景美妙,现实却很骨感。今年智能家电新品发布的频率,明显放缓。2020年将达万亿的智能家居市场“大饼”,也没能挽救多家上市公司当下的业绩于水火。由于缺乏统一标准,企业各自为政,难以形成整体生态,所以智能家居发展道路曲折。
不过,智能电视有望成为率先突破的细分领域。11月20日,智能家居大数据上市公司奥维云网公告,斥资600万元收购“勾正数据”公司20%的股权,希望未来三年内建设中国最具规模的智能电视用户大数据平台,这就是一个积极的信号。
为什么是智能电视?
它的智能化程度,在众多家电产品中最高。国内智能电视的渗透率今年已经达到70%~80%,而且它的优势在于大屏,成为家庭互联网的最大入口。中国有3.5亿个家庭,未来互联网电视的成长空间巨大。所以,这一两年“千军万马”都想跨界做互联网电视。
有人认为,2016年将是互联网电视大屏价值引爆的一年。奥维云网的董事长喻亮星也很认同:“明年会比今年走得快”。因为每年1000多亿元的电视广告,已是现成的市场,未来部分电视广告将转化成互联网电视广告。
事实上,今年海信、创维、TCL、乐视等,都号称分别有5000万元~7000万元左右的开机广告收入。即使这样,它们几个加起来就是几个亿,相比于电视广告一年千亿元的广告规模还是小,互联网电视的广告价值离真正的点爆还远。
挖掘电视大屏价值,还有两大现实的困难。
首先是缺乏数据支撑。喻亮星坦言,奥维就是想尽快把底层数据做出来,为互联网电视广告的精准投入做准确,因为客户并不愿意“闭着眼睛”投广告。
另一个难题是硬件的增值功能需完善。实现增值,要与软件、硬件环境相结合,这对电视的芯片、图像处理能力都有要求。据喻亮星介绍,2013年年底的智能电视产品才开始具有这样的增值能力,目前国内保有量才2000万~3000万台,且激活率只有一半,还分散在不同品牌里,所以目前广告价值暂时还不大。
不过,未来三年将快速增长,国内智能电视保有量将从2015年的8000万台到2018年突破2亿台。而大数据的能力,将是开采电视大屏价值的“锁匙”。
为此,奥维做了两件事情。一是装了奥维软件平台的电视用户,现在有100万台,喻亮星透露,通过与勾正的资源整合,到明年春节前会达到500万台。其次,奥维对接各大品牌的、可以投放广告的智能电视活跃终端已达2000多万台,覆盖TCL、创维、长虹、康佳、夏普、联想等品牌,“一旦我们达到3000万~5000万台,价值就会变大。”
彩电厂为什么愿意让奥维来做呢?喻亮星说,“一是我们的数据采集能力强;二是数据分析能力强;三是奥维天然是第三方,采用收入分成模式,不干扰彩电品牌自身的运营。”
大数据,近年已成为热词,但如何产生真正的价值,还需要实实在在的努力。
奥维此次参股勾正公司,揭开了其大数据布局的“冰山一角”。过去两年,奥维的大数据团队已增至40多人,并在大数据领域重金投入,去年投了500多万元,今年又投了1000多万元。
其储备的大数据能力主要在五个方面:一是数据采集的能力,原来奥维跟全国大连锁合作,成本高、时间慢,现在通过爬虫技术,可覆盖门户网站、电商平台、社交平台等信息;二是云计算能力,原来处理20万条文本信息要2小时,现在只需20秒;三是应用场景的挖掘能力,凭借奥维对家电制造业、流通业和用户多年的研究经验,迅速找到大数据的应用场景;四是建立模型和数据挖掘的能力;五是可视化的能力。
“一定要把大数据落实到小的应用场景。”这是奥维云网的助理总裁韩昱的体会。
像今年“双11”商战,已引入数据战。通过每五分钟监测一次价格变动,奥维可以提醒厂家锁定竞争对手的哪个型号,并建议用哪个产品型号去应对。“以前,奥维只是卖报告,企业看一下市场占有率就完了。现在,通过大数据,我们可以帮助企业,进行实时的决策。”
又如,以前产品创意,做4000个样本,要两个月,花80万~100万;现在利用大数据技术,每月收集10万条信息,2天采集、3天分析、5天出报告,成本只是原来的十分之一。
未来,PC端的视频、广告、游戏、电商、在线教育、精准营销等业务模式,都会延伸到互联网电视端,潜在的价值空间巨大。不只奥维,BAT、彩电巨头、互联网彩电新军、苏宁国美等,谁都想冲着这块“肥肉”来咬一口。
奥维希望搭建一个基于产品和用户的、开放式的大数据平台,并预言“家庭互联网用户大数据将是一个百亿元的蓝海市场”。同样可以预见的是,竞争也会异常激烈。喻亮星明确,尽管与厂商有竞合关系,奥维定位做中间环节,更多是通过数据帮助企业,服务好用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23