京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据开启互联网电视大屏百亿市场
智能家居前景美妙,现实却很骨感。今年智能家电新品发布的频率,明显放缓。2020年将达万亿的智能家居市场“大饼”,也没能挽救多家上市公司当下的业绩于水火。由于缺乏统一标准,企业各自为政,难以形成整体生态,所以智能家居发展道路曲折。
不过,智能电视有望成为率先突破的细分领域。11月20日,智能家居大数据上市公司奥维云网公告,斥资600万元收购“勾正数据”公司20%的股权,希望未来三年内建设中国最具规模的智能电视用户大数据平台,这就是一个积极的信号。
为什么是智能电视?
它的智能化程度,在众多家电产品中最高。国内智能电视的渗透率今年已经达到70%~80%,而且它的优势在于大屏,成为家庭互联网的最大入口。中国有3.5亿个家庭,未来互联网电视的成长空间巨大。所以,这一两年“千军万马”都想跨界做互联网电视。
有人认为,2016年将是互联网电视大屏价值引爆的一年。奥维云网的董事长喻亮星也很认同:“明年会比今年走得快”。因为每年1000多亿元的电视广告,已是现成的市场,未来部分电视广告将转化成互联网电视广告。
事实上,今年海信、创维、TCL、乐视等,都号称分别有5000万元~7000万元左右的开机广告收入。即使这样,它们几个加起来就是几个亿,相比于电视广告一年千亿元的广告规模还是小,互联网电视的广告价值离真正的点爆还远。
挖掘电视大屏价值,还有两大现实的困难。
首先是缺乏数据支撑。喻亮星坦言,奥维就是想尽快把底层数据做出来,为互联网电视广告的精准投入做准确,因为客户并不愿意“闭着眼睛”投广告。
另一个难题是硬件的增值功能需完善。实现增值,要与软件、硬件环境相结合,这对电视的芯片、图像处理能力都有要求。据喻亮星介绍,2013年年底的智能电视产品才开始具有这样的增值能力,目前国内保有量才2000万~3000万台,且激活率只有一半,还分散在不同品牌里,所以目前广告价值暂时还不大。
不过,未来三年将快速增长,国内智能电视保有量将从2015年的8000万台到2018年突破2亿台。而大数据的能力,将是开采电视大屏价值的“锁匙”。
为此,奥维做了两件事情。一是装了奥维软件平台的电视用户,现在有100万台,喻亮星透露,通过与勾正的资源整合,到明年春节前会达到500万台。其次,奥维对接各大品牌的、可以投放广告的智能电视活跃终端已达2000多万台,覆盖TCL、创维、长虹、康佳、夏普、联想等品牌,“一旦我们达到3000万~5000万台,价值就会变大。”
彩电厂为什么愿意让奥维来做呢?喻亮星说,“一是我们的数据采集能力强;二是数据分析能力强;三是奥维天然是第三方,采用收入分成模式,不干扰彩电品牌自身的运营。”
大数据,近年已成为热词,但如何产生真正的价值,还需要实实在在的努力。
奥维此次参股勾正公司,揭开了其大数据布局的“冰山一角”。过去两年,奥维的大数据团队已增至40多人,并在大数据领域重金投入,去年投了500多万元,今年又投了1000多万元。
其储备的大数据能力主要在五个方面:一是数据采集的能力,原来奥维跟全国大连锁合作,成本高、时间慢,现在通过爬虫技术,可覆盖门户网站、电商平台、社交平台等信息;二是云计算能力,原来处理20万条文本信息要2小时,现在只需20秒;三是应用场景的挖掘能力,凭借奥维对家电制造业、流通业和用户多年的研究经验,迅速找到大数据的应用场景;四是建立模型和数据挖掘的能力;五是可视化的能力。
“一定要把大数据落实到小的应用场景。”这是奥维云网的助理总裁韩昱的体会。
像今年“双11”商战,已引入数据战。通过每五分钟监测一次价格变动,奥维可以提醒厂家锁定竞争对手的哪个型号,并建议用哪个产品型号去应对。“以前,奥维只是卖报告,企业看一下市场占有率就完了。现在,通过大数据,我们可以帮助企业,进行实时的决策。”
又如,以前产品创意,做4000个样本,要两个月,花80万~100万;现在利用大数据技术,每月收集10万条信息,2天采集、3天分析、5天出报告,成本只是原来的十分之一。
未来,PC端的视频、广告、游戏、电商、在线教育、精准营销等业务模式,都会延伸到互联网电视端,潜在的价值空间巨大。不只奥维,BAT、彩电巨头、互联网彩电新军、苏宁国美等,谁都想冲着这块“肥肉”来咬一口。
奥维希望搭建一个基于产品和用户的、开放式的大数据平台,并预言“家庭互联网用户大数据将是一个百亿元的蓝海市场”。同样可以预见的是,竞争也会异常激烈。喻亮星明确,尽管与厂商有竞合关系,奥维定位做中间环节,更多是通过数据帮助企业,服务好用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22