京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据把握变迁可以预测未来
大数据是什么,有什么特点。我们看到大数据有四个特征:容量大、增长速度快、类别多、价值密度低。
具体来讲,互联网每天产生大量的互联网行为数据,这些大量的数据,从类别上看有结构性数据,非结构性数据。然后我们在谈大数据的时候很少注意到价值密度低。大数据不是万能的,怎样提炼,提炼纯度有多高,是50%,还是70%、或者是99%,这些因素都很重要。所以大数据只是原材料,这是对大数据基本的定义。
我们未来的发展可能就是数据时代的到来。大数据的未来,关系到是下一代互联网的基本生态,是下一代创新体系,以及下一代制造业的形态、下一代社会治理结构等等方面都跟大数据密切相关。这里面对于在国家的层面就特别重视,新华社9月5号的时候,报道李克强总理签批国务院印发了《促进大数据发展的行动纲要》。纲要强调要紧扣全面建成社会目标,科学编制十三五大数据的纲要。
11月17号,中共中央政治局常委、国务院总理李克强,组织召开了十三五的促进大数据发展行动纲要。这一块里面就越来越落到实处,大数据行为已经是国家层面的战略。
具体汽车行业而言,我们可以从宏观和微观两个层面分享下之前腾讯汽车和北京师范大学传播效果实验室一起推出的腾讯汽车指数,从2012年到2014年的时候,北京师范大学传播效果实验室帮助腾讯汽车做了腾讯汽车指数。 我们用了计划行为理论模型(TPP),TPP理论模型在管理学里面是研究互联网产生行为的预测比较好的理论模型。指数可以在宏观上预测整个汽车行业的变化,趋势是怎么样的,每个月会提交一份整个大盘的走势,就像我们上证指数或深指的预测;第二,可以看出细分市场变化,比如小型车、中型车或豪华车每个月的市场变化;第三,指数可以关注国别细分市场,比如德系车、日系车、韩系车、美系车是怎么迁移的。车主二次购车时怎么转移,车主置换的转移对车企和经销商是极其重要的领域。比如德系车主有多大比例的人群会保留在德系阵营,还有多少人转移到自主品牌,还有多少人转移到日系车等等,我们都做了一系列的分析,这是在宏观上可以来把握整个汽车行业的变化。
在微观的层面,大数据能够帮助我们把握具体汽车企业、车型和车款的市场状况。具体在宏观里面,我们有很多的预测数据,都知道宏观经济学是只要有数据,含量不是特别高。宏观产业的数据,只要是一个人,简单的百分比和趋势谁都可以说。宏观经济学其实门槛是很低的。我们对于汽车企业宏观层面的分析也是很容易做的,只要有上牌数量、消费数量就可以预测。
但是关键的核心是微观的,每个月车型、每一个车款的市场竞争是怎么样的,有什么短板,该怎么去竞争,这一块是非常具体的,也是考验我们水平的。细分到区域市场,在不同区域是怎么样的也可以来解决。每个省的重点区域是怎么样,还有一个是具体的品牌,或者说具体的车款。现在保有车主是市场竞争非常重要的方面,我这个品牌、这个车型现在保有车主会不会流行,有多大的维持率,70%还是60%?我们能够维持到50%就不错了。
那么流到什么地方去了?比如说A品牌车主流失了17.7%到B品牌的时候,是什么人流失的。17.7%怎么追回来,他们接触的是什么媒体,他们的评论是什么样的,哪些是负面的。他们在评论的时候,哪些是负面的评论,我们怎么样去改进,怎么把改进信息传递给他们来改变态度和关紧,这都是很精确化的营销。
大数据最核心的分析的数据对象本身有市场意义和市场价值。不像样本数据,样本数据本身是必须做推动才能产生意义。大数据里面,本身分析的数据就有市场的价值和市场的意义,所以把这些数据反复分析,也可以深入分析下去,可以照准消费者怎么样变迁。
最后谈谈大数据最大的特点,它是实时动态的资源。什么叫实时动态?比如说我们产生一个数据报告,要产数据,然后形成报告。但是汽车市场的变化是很快的,不停的有新车在发布,不停地在产生新的变量在冲击市场。而我们用互联网大数据的时候,就是源源不断地在告诉我们新的变量在加入的时候,对于我们会有什么的冲击,对于我们会有什么样的影响,所以是一种实时动态的资源。这种动态资源是可以随时把握变迁是怎么样的,及时地做出我们的决策,这是我们在市场竞争里面非常重要的一点。
消费者的行为、态度、认证正在发生变迁,我们该怎么样来预测。预测比事后治病更重要,这是大数据里面相对一般的报告而言非常重要的特质,就是在没有发作的、正在发作的时候能够把握病脉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24