
大数据把握变迁可以预测未来
大数据是什么,有什么特点。我们看到大数据有四个特征:容量大、增长速度快、类别多、价值密度低。
具体来讲,互联网每天产生大量的互联网行为数据,这些大量的数据,从类别上看有结构性数据,非结构性数据。然后我们在谈大数据的时候很少注意到价值密度低。大数据不是万能的,怎样提炼,提炼纯度有多高,是50%,还是70%、或者是99%,这些因素都很重要。所以大数据只是原材料,这是对大数据基本的定义。
我们未来的发展可能就是数据时代的到来。大数据的未来,关系到是下一代互联网的基本生态,是下一代创新体系,以及下一代制造业的形态、下一代社会治理结构等等方面都跟大数据密切相关。这里面对于在国家的层面就特别重视,新华社9月5号的时候,报道李克强总理签批国务院印发了《促进大数据发展的行动纲要》。纲要强调要紧扣全面建成社会目标,科学编制十三五大数据的纲要。
11月17号,中共中央政治局常委、国务院总理李克强,组织召开了十三五的促进大数据发展行动纲要。这一块里面就越来越落到实处,大数据行为已经是国家层面的战略。
具体汽车行业而言,我们可以从宏观和微观两个层面分享下之前腾讯汽车和北京师范大学传播效果实验室一起推出的腾讯汽车指数,从2012年到2014年的时候,北京师范大学传播效果实验室帮助腾讯汽车做了腾讯汽车指数。 我们用了计划行为理论模型(TPP),TPP理论模型在管理学里面是研究互联网产生行为的预测比较好的理论模型。指数可以在宏观上预测整个汽车行业的变化,趋势是怎么样的,每个月会提交一份整个大盘的走势,就像我们上证指数或深指的预测;第二,可以看出细分市场变化,比如小型车、中型车或豪华车每个月的市场变化;第三,指数可以关注国别细分市场,比如德系车、日系车、韩系车、美系车是怎么迁移的。车主二次购车时怎么转移,车主置换的转移对车企和经销商是极其重要的领域。比如德系车主有多大比例的人群会保留在德系阵营,还有多少人转移到自主品牌,还有多少人转移到日系车等等,我们都做了一系列的分析,这是在宏观上可以来把握整个汽车行业的变化。
在微观的层面,大数据能够帮助我们把握具体汽车企业、车型和车款的市场状况。具体在宏观里面,我们有很多的预测数据,都知道宏观经济学是只要有数据,含量不是特别高。宏观产业的数据,只要是一个人,简单的百分比和趋势谁都可以说。宏观经济学其实门槛是很低的。我们对于汽车企业宏观层面的分析也是很容易做的,只要有上牌数量、消费数量就可以预测。
但是关键的核心是微观的,每个月车型、每一个车款的市场竞争是怎么样的,有什么短板,该怎么去竞争,这一块是非常具体的,也是考验我们水平的。细分到区域市场,在不同区域是怎么样的也可以来解决。每个省的重点区域是怎么样,还有一个是具体的品牌,或者说具体的车款。现在保有车主是市场竞争非常重要的方面,我这个品牌、这个车型现在保有车主会不会流行,有多大的维持率,70%还是60%?我们能够维持到50%就不错了。
那么流到什么地方去了?比如说A品牌车主流失了17.7%到B品牌的时候,是什么人流失的。17.7%怎么追回来,他们接触的是什么媒体,他们的评论是什么样的,哪些是负面的。他们在评论的时候,哪些是负面的评论,我们怎么样去改进,怎么把改进信息传递给他们来改变态度和关紧,这都是很精确化的营销。
大数据最核心的分析的数据对象本身有市场意义和市场价值。不像样本数据,样本数据本身是必须做推动才能产生意义。大数据里面,本身分析的数据就有市场的价值和市场的意义,所以把这些数据反复分析,也可以深入分析下去,可以照准消费者怎么样变迁。
最后谈谈大数据最大的特点,它是实时动态的资源。什么叫实时动态?比如说我们产生一个数据报告,要产数据,然后形成报告。但是汽车市场的变化是很快的,不停的有新车在发布,不停地在产生新的变量在冲击市场。而我们用互联网大数据的时候,就是源源不断地在告诉我们新的变量在加入的时候,对于我们会有什么的冲击,对于我们会有什么样的影响,所以是一种实时动态的资源。这种动态资源是可以随时把握变迁是怎么样的,及时地做出我们的决策,这是我们在市场竞争里面非常重要的一点。
消费者的行为、态度、认证正在发生变迁,我们该怎么样来预测。预测比事后治病更重要,这是大数据里面相对一般的报告而言非常重要的特质,就是在没有发作的、正在发作的时候能够把握病脉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08