京公网安备 11010802034615号
经营许可证编号:京B2-20210330
能源电力行业应主动适应和引领大数据变革
所谓引入大数据,是指建立面向大数据的生产与组织管理模式,这是每个行业的必然趋势。能源电力行业的信息化发展水平较高,有资本密集优势,是大数据应用的先行部门,应当主动适应和引领大数据变革。”中国人民大学环境政策与环境规划研究所副所长傅毅明在近日举办的企业协创平台建设与行业知识大数据应用研讨会上对记者表示。
大数据可在电改中“一展身手”
“大数据作为重要的生产要素,是能源电力行业发展转型的重要支撑。”傅毅明在接受记者采访时表示,一方面大数据能促进能源电力行业管理变革,提高能源资源配置效率,比如能耗(电力)在线监控系统的建设对于节能减排具有重要贡献。
另一方面是可以提高国民经济的监控能力,将能源电力系统的运行作为反映国民经济运行安全与效率的晴雨表。
据了解,电网的业务数据大致分为三类:一是像发电量、电压稳定性等方面的电力企业生产数据;二是像交易电价、售电量等方面的电力企业运营数据;三是如一体化平台、协同办公等电力企业管理数据。业界认为,如果能充分利用这些基于电网实际的数据,对其进行深入分析,便可以提供大量的高附加值服务。
记者在采访中发现,多位专家有着相似的想法,即当前我国已开启新一轮的电改,一系列配套文件正在逐步出台,然而这些政策是否有利于智能电网的发展,在政策的试行阶段开展分析和检验,大数据是非常有效的手段。
据中国电力企业联合会科技开发服务中心相关负责人透露,目前,中电联正在积极落实电改“9号文”及配套措施的要求,研究建立电力行业信用信息应用大数据中心,采集电力企业信息(含售电企业),同时进行动态管理,从不同维度采集数据,这就需要从不同方面加强数据交换和共享,实现政府、行业、企业协作,实现电力企业信用信息及时公示,将其逐步纳入全国统一信用大数据中心。
“我们提出要形成覆盖全行业及其上下游信用链的征信系统,建立守信激励和失信惩戒机制,进一步提高电力行业诚信意识和信用水平,通过建设与全国统一的征信系统对接的电力行业信用管理与服务平台,为行业和社会监督、信用评价与信用采信提供便捷的途径。”这位负责人说。
能源电力的“大数据问题”仍待突破
无疑,大数据为能源电力的发展带来了新机遇。但专家提醒,要想顺利搭上“大数据”这班列车,业界至少还需要跨过几道门槛。
中电联相关负责人认为,目前社会各界获取电力相关信息的方式主要有国家发展改革委、国家统计局、国家能源局等部委网站、门户网站、主流纸媒、各类论坛会议以及相关咨询研究机构等,尚缺乏一个全面、权威的支撑科学决策的电力行业大数据中心。中电联有必要联合相关互联网企业协同建立电力行业大数据中心。
同方知网产业集团能源事业部总经理闵艳丽告诉记者,从电力企业知识管理的角度来讲,以往以文献信息为主的知识主要来源于数据库资源、互联网情报资源以及企业内部档案资源,但这些知识从数据量的角度来讲,尚达不到大数据拍字节量级。但这并不意味着电力企业无法开展大数据知识管理。
据科学家估算,人类大脑容量预计在1.25太字节。这意味着,一个拥有800名员工的企业,其隐性知识存有量就能达到1拍字节(1024太字节),即“大数据”量级。另外,从数据挖掘与揭示的角度来讲,大数据在电力行业信息服务领域的应用还包括挖掘文献背后的概念语义关系。据闵艳丽介绍,以往查询“智能电网”,通过网络一站式检索,能够找到大量与之相关的学术文献,更深一步的信息服务仅仅是按作者、机构、基金、来源、时间等对文献进行排序。如果运用大数据可视化技术,我们可以从更多维度来深度揭示文献背后的隐性关系,比如通过发文量统计与揭示,找到最近3年“智能电网”的总体研究趋势,再比如通过关键词在上述文献中的出现次数,可分析出近3年的研究热点。
关于大数据应用方面,傅毅明说:“能源电力作为企业重要的成本支出项,是企业管理的重要内容。由于大数据的基础投入较大,在大中型工业企业的应用较好,中小企业的应用方面相对薄弱。比如建筑用能方面,大型公共建筑应用较多,一般公共建筑和居民建筑应用较少,主要原因是单个大数据平台的基础建设成本较高,可以通过建立大数据公共服务平台的方式降低成本,提高服务水平。交通用能方面,大量货运企业都是‘小、散、乱’的组织形态,大数据应用和节能减排方面的能力不足,需要重点关注。”有关能源电力行业应如何与大数据更好地结合发展的问题,傅毅明认为,一是要强化能源电力行业内部的大数据资源建设,培育专业的大数据服务商,发挥能源电力行业在“互联网+”和大数据应用的先行引领作用。二是要加强能源电力行业大数据资源与国民经济其他行业大数据资源的交换共享,打造能源经济运行大数据监控平台,为各级政府、行业部门、企业和公众等服务。另外,本着顶层设计与试点示范相结合的原则,还需要有一个路线图和组织分工网络。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19