京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据核心是在应用层面 真实有效最重要
2015年11月20日在广州车展(微博)现场,腾讯汽车举行大数据研究院战略发布仪式,正式启动“罗盘计划”。在发布仪式现场,北京金马甲产权网络交易有限公司副总裁龚冯兵现场参与互动讨论。
龚冯兵:金马甲从2009年诞生之日开始到现在已经六个年头了,在这六年里,金马甲平台在各地公车的处置上,积累了几十万条数据。我们从二手车交易来看,本地化属性很强烈。基本上做二手车都在周边800到1000公里范围之内,这就是二手车生态的特点。
从数据的角度说,不管是对于处置公车还是二手车,首先做公有车处置核心的是汽车价值评估。基于这个市场来说,之前在近几期的针对同一车款、同一年份等等,二手车的成交价格、车况什么样,车价格什么样,对于新进入市场做评估的时候,这种数据就会有具体的应用。
同时对于经销商来说,周边最近看什么品牌的车,或者什么样的二手车销量和处置情况状态,这对于经销商来说也是有利用价值的数据。因为大数据来说,我们之前也都或多或少像J.D.Power所说的,从很早的时间就做大数据,但是没有像现在是当做特别新的概念来提。可能很多人都会在大街上碰到调查问卷,这些都是大数据最原始的搜集和积累应用的方面,只不过这些年随着互联网技术、新技术的增加,让数据的采集和数据的获取方面得到了极大的效率,在数据获取的效率方面得到了极大提升。同时,利用新技术对于数据的处理分析能力也获得了巨大的提升。
在二手车处置方面,大数据最核心的是在应用层面,什么样的人来用数据,身份不一样,那对于数据的要求是不一样的。可能针对于汽车行业,我个人认为可能有三个。一个是主机厂,一个是汽车的经销商,包括各类新车的经销商、二手车经销商,还有最广大的是用户。针对于各个层面在汽车领域里面的身份,对于数据的需求是不同的。我们作为交易平台来说的话,现在正在做的工作,就是针对于不同的身份来提供相应感兴趣的,或者针对与他适应性非常强的数据。
问:请问龚冯兵总,现在在广州、深圳、天津、杭州实施的禁牌的系统,其实里面也有很多的数据。您能否介绍一下这种数据?其实更偏向于更精准一点。从这种数据来看的话,平台运营情况怎么样,以及各个城市之间有差异?互联网数据和这个平台进行结合的话,请您谈一下看法?
龚冯兵:实际上从这四地号牌每个月的竞价情况来看,就像刚才咱们所介绍的一样,本地的特性是特别明显的。不管是从参与人数,从每个地号牌成交的均价来说,地区之间都有差异化。从整体来说,像我们四地基本上每个月的竞牌的获得者总体来说在2万个用户。因为还有一部分是摇号的,光是通过竞价方式获得车牌的就是2万用户左右。每个月关注的在10万左右,也就是有意向竞牌的统计下来有10万左右。关注的基本上就更多了,在四个城市里面有两三百万的规模。
本身竞牌的核心就是一个数据最核心的,这个月可能获得了竞牌会在未来的一个月到两个月会实施购车计划。在这个过程当中,实际上这个数据对于各个品牌的主机厂来说,或者是对于想要在未来获得购买汽车,以及对获得车牌的广大消费者来说,都是有非常好的意义。
我们在通过之前每期的车牌竞价数据的积累,也是在不断地分析、研究,包括数据的车牌价格的走向。也挺有意思的,不像8、9月份价牌会高,10月到11月价格又回落。而是价格有高有低,我们也是通过数据的分析形成价格波峰波谷的规律。同时希望通过数据分析,对于主机厂和对于四地的消费者来说,也能够给予一定的参考和支撑的作用。
第一个层面,在顶层上现在大家都在说大数据,国家在大数据相关立法方面应该拿出具体的措施来。让大家在一个合规合法的情况下去获取数据,去分析数据,去运用数据,让它在法制的大环境下产生更大的经济效益。
第二个层面,像各位嘉宾都是在做大数据生产和经营方面的事情。对于消费者来说,我们能够给各类的消费者提供真实有效的,特别是有效和真实的数据,是我们大数据从业者所要牢固树立的核心出发点。
第三个层面,从金马甲本身来说,希望在今后包括跟腾讯汽车,罗盘计划我们也进入了,跟张教授和从业者一起共同努力,给汽车行业的经营者和消费者提供更为高效和优质的服务。
张教授刚才提到了腾讯推出具体的产品,实际上金马甲跟腾讯现在正在做的四地号牌的产品。我们利用腾讯的微信,做了一个微信的四地号牌的产品,通过这个产品可以给四地号牌消费者非常好的服务,包括历史成交的数据,包括下一步的价格分析等等。我们想通过与跟腾讯汽车合作的产品,来为消费者进行精准的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26