
围绕着每一款新品或营销策略决定背后,不同于其他体育用品公司仍要依靠专业运动员、第三方数据调研等手段收集数据,耐克独有的社交运动平台Nike+正在成为耐克新品设计、营销推广等商业决策的重要依据。 先讲2个例子: 10月22日,包括两届网球大满贯冠军李娜、奥运金牌获得者埃里森·菲利克斯等在内的27位世界顶级运动员齐聚纽约,为耐克公司揭幕其Nike Women全新的春夏季系列,这也是耐克首次在全球如此大规模的推广其女子运动系列。 如此重视女性消费者,加码女性业务增长,背后主要的驱动力并不仅是传统数据调研或经验判断,而是耐克发现,其Nike+ Training Club应用程序已被下载1600万次,而其中900万竟然是女性下载了Nike+Running应用程序。 这也是耐克基于对其数字社区里的6500万名女性的研究。 9月26日,在上海,耐克宣布推出全新的zoom air系列跑步鞋,还请来了 2012 年伦敦奥运会万米冠亚军 Mo Farah 和 Galen Rupp 分享他们对于耐克跑鞋的体验。 与此前的诉求点不同,耐克此次主打“跑得更快”,提高跑步速度成为其此次产品的主要卖点。这是由于通过对Nike+数据研究,耐克发现,与第一阶段中国的跑者更多集中于40岁左右的中年人出于其健康担忧开始跑步不同,在耐克的社交运动网上,更多是19岁左右的跑者,他们自己组成年轻的跑团,自己上传数据,能不能跑得更快,对速度的追求成为其主要目标。 对耐克而言,通过Nike+这个硬件、软件、社区配合在一起的大平台,Nike每天都能收获源源不断的用户数据,这些数据能为Nike带来什么? 正是这些跑者上传的数字,成为耐克在比如产品设计、新品推广、线上线下营销等商业决策背后的重要依据,它能通过对用户跑步信息的收集帮助Nike找到用户、了解用户,从而更加精准地开展营销活动。 比如通过Nike+,耐克发现用户多数在夜间跑步锻炼,于是他们的研发部门就在设计鞋和衣服时,都加上了反光材料,提高了可见度和安全性。 也看到跑者对于速度的需求,耐克今年还在社区上新增加了“Nike+教练”功能,通过集合耐克教练资源与顶尖运动员的意见,根据每个跑步爱好者的比赛目标和能力,定制专属的跑步计划。 耐克提供的最新数据显示,现在Nike+全球注册用户共有2000多万。尽管在耐克的财报上,某款产品的效力多大还无从体现,但对一直占据营收前列的跑步业务来说,“Nike+正在成为拉动该公司业绩增长的新引擎。”张庆认为。 耐克2015年第一季度财报称,整个季度的营业收入增长15%,达到了近80亿美元,而在中国区,扣除了汇率波动造成的差价影响后,其业绩营收增长达20%。 Nike+无疑是耐克数码创新上的里程碑。2006年,耐克总部的工程师发现,在俄勒冈大学校园里,几乎每个人都使用iPod。在与苹果公司接触后,Nike+iPod的方案一拍即合。这让耐克第一次尝到了数字化社区带来的甜头。 经过几代的升级,Nike+支持多种系统下载,通过手机,跑者可以获得自己的运动时间、步伐、消耗热量、路线等数据。如今通过Nike+而衍伸出来的产品,正在通过更多形式的载体涉猎更多的运动,例如Nike+Training以及fuelband等。技术的革新也推动着耐克新的商业模式的应用——即“用户+ 数据+服务+终端。” 行业里目前的一个共识是,Nike+背后还是大数据的应用,即通过对用户行为的分析,以更了解用户的需求。体育行业资深人士认为,“靠卖智能的鞋子和衣服赚不了多少钱,但背后的数据却具有巨大的想象空间。 但耐克如何能够挖掘这一宝矿还有待考验。虽然商业逻辑还不清楚,但是这肯定是耐克未来与竞品的核心竞争力之一。” Nike+对于耐克的意义还在于,它将完全改变公司与用户间的沟通模式,将以往耐克的单向发出声音,转变为公司和全球用户在同一个“社区”下生活的情景。这无疑会大大增加耐克了解消费者的机会,加强用户的黏度。 而Nike+或许可以帮助耐克更快地找到它的目标客户,从1%的运动精英转而影响9%普通运动者到90%的潜在消费者,如同在跑步领域一样,把某项运动或品类做得更为精深,助推销售。 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23