
围绕着每一款新品或营销策略决定背后,不同于其他体育用品公司仍要依靠专业运动员、第三方数据调研等手段收集数据,耐克独有的社交运动平台Nike+正在成为耐克新品设计、营销推广等商业决策的重要依据。 先讲2个例子: 10月22日,包括两届网球大满贯冠军李娜、奥运金牌获得者埃里森·菲利克斯等在内的27位世界顶级运动员齐聚纽约,为耐克公司揭幕其Nike Women全新的春夏季系列,这也是耐克首次在全球如此大规模的推广其女子运动系列。 如此重视女性消费者,加码女性业务增长,背后主要的驱动力并不仅是传统数据调研或经验判断,而是耐克发现,其Nike+ Training Club应用程序已被下载1600万次,而其中900万竟然是女性下载了Nike+Running应用程序。 这也是耐克基于对其数字社区里的6500万名女性的研究。 9月26日,在上海,耐克宣布推出全新的zoom air系列跑步鞋,还请来了 2012 年伦敦奥运会万米冠亚军 Mo Farah 和 Galen Rupp 分享他们对于耐克跑鞋的体验。 与此前的诉求点不同,耐克此次主打“跑得更快”,提高跑步速度成为其此次产品的主要卖点。这是由于通过对Nike+数据研究,耐克发现,与第一阶段中国的跑者更多集中于40岁左右的中年人出于其健康担忧开始跑步不同,在耐克的社交运动网上,更多是19岁左右的跑者,他们自己组成年轻的跑团,自己上传数据,能不能跑得更快,对速度的追求成为其主要目标。 对耐克而言,通过Nike+这个硬件、软件、社区配合在一起的大平台,Nike每天都能收获源源不断的用户数据,这些数据能为Nike带来什么? 正是这些跑者上传的数字,成为耐克在比如产品设计、新品推广、线上线下营销等商业决策背后的重要依据,它能通过对用户跑步信息的收集帮助Nike找到用户、了解用户,从而更加精准地开展营销活动。 比如通过Nike+,耐克发现用户多数在夜间跑步锻炼,于是他们的研发部门就在设计鞋和衣服时,都加上了反光材料,提高了可见度和安全性。 也看到跑者对于速度的需求,耐克今年还在社区上新增加了“Nike+教练”功能,通过集合耐克教练资源与顶尖运动员的意见,根据每个跑步爱好者的比赛目标和能力,定制专属的跑步计划。 耐克提供的最新数据显示,现在Nike+全球注册用户共有2000多万。尽管在耐克的财报上,某款产品的效力多大还无从体现,但对一直占据营收前列的跑步业务来说,“Nike+正在成为拉动该公司业绩增长的新引擎。”张庆认为。 耐克2015年第一季度财报称,整个季度的营业收入增长15%,达到了近80亿美元,而在中国区,扣除了汇率波动造成的差价影响后,其业绩营收增长达20%。 Nike+无疑是耐克数码创新上的里程碑。2006年,耐克总部的工程师发现,在俄勒冈大学校园里,几乎每个人都使用iPod。在与苹果公司接触后,Nike+iPod的方案一拍即合。这让耐克第一次尝到了数字化社区带来的甜头。 经过几代的升级,Nike+支持多种系统下载,通过手机,跑者可以获得自己的运动时间、步伐、消耗热量、路线等数据。如今通过Nike+而衍伸出来的产品,正在通过更多形式的载体涉猎更多的运动,例如Nike+Training以及fuelband等。技术的革新也推动着耐克新的商业模式的应用——即“用户+ 数据+服务+终端。” 行业里目前的一个共识是,Nike+背后还是大数据的应用,即通过对用户行为的分析,以更了解用户的需求。体育行业资深人士认为,“靠卖智能的鞋子和衣服赚不了多少钱,但背后的数据却具有巨大的想象空间。 但耐克如何能够挖掘这一宝矿还有待考验。虽然商业逻辑还不清楚,但是这肯定是耐克未来与竞品的核心竞争力之一。” Nike+对于耐克的意义还在于,它将完全改变公司与用户间的沟通模式,将以往耐克的单向发出声音,转变为公司和全球用户在同一个“社区”下生活的情景。这无疑会大大增加耐克了解消费者的机会,加强用户的黏度。 而Nike+或许可以帮助耐克更快地找到它的目标客户,从1%的运动精英转而影响9%普通运动者到90%的潜在消费者,如同在跑步领域一样,把某项运动或品类做得更为精深,助推销售。 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08