京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业如何挖掘自身大数据的价值 一:思路与流程
当前,传统(非互联网类)企业已认识到大数据的价值,但如何结合企业现状有效应用大数据,仍普遍存在着迷茫。针对这种现状,HCR基于企业大数据应用的相关服务经验,提出一些可行性的思路和建议,供企业客户了解和实施。
本文内容适合拥有较多客户资源(ToC和部分ToB)和内部数据的大中型企业,对拥有大量企业/个人管理数据的政府机构(如税务)的大数据应用也有借鉴意义。
一、企业最有价值的数据在哪里
大数据的价值基础来自于数据,对于企业最有价值的数据,我们认为有两点:
1)内部业务大数据(而非外部大数据)具有最高的应用价值
企业的大数据,从来源讲可分为内部(自身业务生产经营环节产生的所有数据)和外部(来自外部,如第三方/互联网)。当前企业热衷于引入来自外部的大数据(如互联网/电商/移动互联网)和相关服务应用,而忽视了一个事实:现有的内部业务大数据才是最大的价值挖掘目标。
大中型企业在信息化与数据应用过程中,大都已经完成了第一阶段(信息化系统建设与业务数据采集的自动化/常态化)的工作。多年来建立的各种业务信息系统已积累了大量业务数据。而进入第二阶段(挖掘数据提升企业业务经营管理)后,却进度缓慢。相比外部数据,内部业务数据体量大,内容多样,时间跨度长,是企业大数据的主体。因其与企业特性直接相关,深入覆盖经营的各个环节,其对企业的价值远大于各种外部数据。然而,这些数据很少发挥出应有的价值,大都沉睡在那里,甚至成为负担。
2)内部业务大数据中,应优先关注服务客户相关的数据
企业内部业务大数据,如果按逻辑属性划分,可分为两大类:
1) 产品/服务相关: 围绕企业产品/服务相关的(研发/设计/原材料/生产/制造/反馈)的数据
2)服务客户相关: 围绕着目标客户(可为B或者C)的相关(售前/销售/客服/运维/活动/CRM等等)数据
以上两类数据中,服务客户相关的业务行为对企业经营影响巨大。其数据也是企业内部大数据的主体,应优先作为内部大数据挖掘应用的目标。
二、实施的流程
下面,针对企业最有价值的内部业务数据集,结合消费者研究与标签化研究方法,我们来介绍如何有效挖掘其大数据价值的机制。
首先我们给出一个主要的流程,后续将对每个步骤进行详细说明。
数据来源:大数据平台部@HCR
Step1总体体系设计: 对现有内部数据进行重构设计
对现有的业务数据体系,结合实际情况与未来的应用目标,重新进行数据组织和规划。过程中要关注两点:
要点1:数据的组织,要从功能为中心转向以客户为中心(按生命期阶段组织)。企业内部业务数据,当前大多是以业务功能(系统)为中心组织,相互间未充分打通。用于价值挖掘的业务数据,要以每个客户为中心,以用户生命期为线,将其所有业务功能阶段的数据串起来。
要点2:以类标签化的思想建立客户的数据描述体系,作为未来全景数据整合的框架。描述体系的来源数据不仅有内部数据,也包含外部数据(辅助)。实际的数据整合处理将基于该体系进行:已有的数据可直接引入,缺失数据内容作为后续采集/外购的主要目标。
以某车企客户为例,其相关的大数据,对应由9大内部业务系统产生,各自独立。在数据体系重构整合中,重构的示意图如下:
数据来源:大数据平台部@HCR
Step2 数据整合集中 :对现有数据进行实际整合,建立一个统一大数据平台
基于step1得到的规划方案,对现有的业务数据通过技术手段从各业务系统整合到统一大数据平台上。该平台作为数据分析平台,与生产业务系统分离,提供对数据仓库/结构化/非结构化数据的支持。
整合中要注意:
(1) 数据模型的设计以及数据ETL(清洗/转化),都需要以客户为中心进行统一规划
(2) 充分考虑新数据体系中缺失/不足的数据内容未来的融入和整合机制。
Step3 标签化分析 : 对客户进行全方位标签化分析,生成标签化描述结果
在step2整合得到的以用户为中心的多维度数据空间上,基于消费者研究与业务特性建立用户标签体系,并对客户进行实际的标签化分析。标签体系的定义,要兼顾用户基本信息、业务特点和未来应用的目的,并不断扩展。
比如前述的车企客户,对用户标签,已经定义了如下几类:基本属性(性别、年龄段、购买能力、职业阶层…)、家庭情况(家有儿童,第二辆车)、车型/驾驶偏好(如偏好SUV 、注重安全性.、追求速度感…)、配件关注点(喜欢原装、喜欢功能性配件)、内装偏好、保养习惯、参与活动偏好、触媒习惯等。
Step4 业务实际应用/挖掘: 通过业务活动,进行客户大数据价值的实际挖掘和应用
对所有客户分析得到标签化描述结果,可通过统一的客户分析平台,提供给企业内部所有部门实际应用。各部门可根据实际业务需要,通过标签灵活准确筛选目标客户(如市场部可以查找80后家有儿童且购买能力强的目标客户做MPV家用车型推广),或发现产品客户群的深层特性(产品设计部门可分析车型的目标客户与实际购买客户是否一致)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15