京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何理解“大数据”:数据质变的3个方面
大数据(Big Data),字面意思是“海量数据”,简单讲就是所涉及的数据量规模巨大到无法通过目前的主流技术和工具来处理,这里的“处理”涵盖了很多层含义:提取、存储、管理、分析、传输、预测等。
可是,这仅仅是对“大数据”的粗浅理解。
最早提出“大数据”概念的学科是“天文学”和“基因学”,这两个学科从诞生之日起就依赖于“基于海量数据的分析”方法。
大数据可以说是“计算机”和“互联网”结合的产物,计算机实现了数据的“数字化”;互联网实现了数据的“网络化”;两者结合才赋予了“大数据”生命力!
随着互联网如同空气、水、电一样无处不在地渗透入我们的工作和生活,加上移动互联网、物联网、可穿戴联网设备的普及,新的“数据”正在以指数级别的加速度产生。据说目前世界上90%的“数据”是互联网出现以后迅速产生的。
不过,抛开数据的海量化生产和存储这种表面现象,我们更加要关注的是由数据量变带来的质变,这种“质变”表现在以下3个方面:
1)数据思维
大数据时代带给我们的是一种全新的“思维方式”,思维方式的改变在下一代成为社会生产中流砥柱的时候就会带来产业的颠覆性变革!
- 分析全面的数据而非随机抽样;
- 重视数据的复杂性,弱化精确性
- 关注数据的相关性,而非因果关系。
历来的商业变革都是由“思维方式的转变”开始的,旧的经济体制和传统的商业理念面临新的商业思维逻辑的时候,如果大脑不能与时俱进,吸收并转变为顺应潮流的新思维,通过新思维重新组织企业组织的战略、结构、文化和各种策略,那么貌似强大的体魄反而变成了企业前进的累赘。
这种新思维颠覆巨头的案例最先发生在信息技术的传统领域,然后渗透到传统的商业领域:黑莓(Blackberry)、摩托罗拉、诺基亚、柯达、雅虎。。。案例比比皆是!
当然,这些企业的没落并不是因为没有“数据思维”,但他们都是被“新互联网思维”淘汰的昔日巨人。“数据思维”是最新的思想,其影响力还没有发展到导致巨头轰然倒塌。但是,如果不给予足够的重视,下一波没落王国的名单中,可能就会有你!
2)数据资产
大数据时代,我们需要更加全面的数据来提高分析(预测)的准确度,因此我们就需要更多廉价、便捷、自动的数据生产工具。除了我们在互联网虚拟世界使用浏览器、软件有意或者无意留下的各种“个人信息数据”之外,我们正在用手机、智能手表、智能手环、智能项链等各种可穿戴数码产品生产数据;我们家里的路由器、电视机、空调、冰箱、饮水机、吸尘器、智能玩具等也开始越来越智能并且具备了联网功能。
这些家用电器在更好地服务我们的同时,也在生产大量的数据;甚至我们出去逛街,商户的路由器,运营商的WLAN和3G,无处不在的摄像头电子眼,百货大楼的自助屏幕,银行的ATM,加油站以及遍布各个便利店的刷卡机都在收集和生产数据。
在互联网领域,我们喜欢说“入口”这个词,“入口”对应的直接意义是“流量”,而流量在互联网领域就意味着“金钱”,这种流量变现可能是广告,可能是游戏,也可能是电商。
在大数据时代,“入口”这个词还有更深刻的意义,那就是“数据生产的源头”,用户通过某个APP或者硬件产品满足某种需求的同事,也会留下一系列相关的“数据”,这些数据的合理使用可以让拥有这部分数据的企业获得更大的商业利益!
所以,在“大数据”时代,意识到“数据也是资产”的公司都已经开始在各个“数据生产的源头”进行布局,可能是一个解决刚兴需求的WEB网站,也可能是一个单纯的工具APP,还可能是一个可穿戴的数码产品!
3)数据变现
有了“数据资产”,就要通过“分析”来挖掘“资产”的价值,然后“变现”为用户价值、股东价值甚至社会价值。
大数据分析的核心目的就是“预测”,在海量数据的基础上,通过“机器学习”相关的各种技术和数学建模来预测事情发生的可能性并采取相应措施。预测股价、预测机票价格、预测流感等等。
“预测事情发生的可能性”继续往下延伸,就可以通过适当的“干预”,来引导事情向着期望的方向发展。比如亚马逊和所有的电商一样,都会基于对用户的喜好及消费能力分析来推荐“商品”,引导用户提高消费金额;Google等互联网巨头也会通过各种技术手段来试图向不同的用户展现不同的广告,并称之为“精准营销”,由此来提高点击率(公司收入);网游公司也会在运营工程中通过玩家行为数据的分析来及时调整游戏关卡及计费点等设计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06