京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据真诱人,但你以为从此高枕无忧了吗
大数据所带来的比以往任何时候都能够对客户的生活、习惯和愿望了解更多的前景预期,无疑令人兴奋不已。然而抛却这所有的兴奋,我们不应该忘记的是,很少有商界人士,乃至是高级管理人士,能够真正理解大数据是什么样的一种革命性的力量,或大数据对于各类企业来说所代表的破坏性威胁。
当你准备对大数据所带来的所有的光鲜机遇大加利用时,别忘了,存在于大数据中的魔鬼可能会出现在以下这些被忽视的细节之中:
对于正在收集和储存大量客户数据的公司来说,最显而易见的威胁,就是那种一直困扰塔吉特、家得宝和摩根大通这样的大规模安全泄露。在过去的几年里,数以百计的其他公司也都曾经历过类似的数据泄露,全都是因为侵入企业数据库的人一直以来都比试图保全企业数据库免受数据泄露的人更加机智、更加坚持。
【解决方案】
大数据时代更好的安全,意味着保证所需基础设施和人员的长期投资,以保护这种快速成为每个组织更重要的资产,即其客户数据。
大数据不仅仅是更多的信息,而是成倍增长的来自四面八方的巨大海量信息。淹没在所有这些数据之中的可能性是真实存在的。因在无关的数据海洋中艰难跋涉而浪费很多时间、精力和资源的可能性同样也是真实存在的。未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不受到的沉痛教训是,太多无用的信息造成的信息不足或信息不匹配。
【解决方案】
尝试尽可能地使数据类型具体化,将会有益于对数据的了解。数据本身正在变得更加细化,所以对于数据的筛选也同样需要做得更加精致。缩小数据的聚焦范围。定义数据的相关参数。别忘了问自己一下这个浅显的问题:如果你可以与客户实时沟通,那他们在你的品牌和其他品牌之时做选择时,你会对他们说什么?如何说?
自从有了大数据,对于一些人来说,很容易就会有针对别人哪怕是最老牌的企业发起竞争性挑战的想法。大数据将展现出别人能够轻易利用的竞争格局中差距。任何人只要敢于尝试,即使不存在竞争威胁,也有可能成为潜在的竞争威胁。
【解决方案】
无论多大的组织,系统都需要像小组织或初创组织那样,时刻保持至少部分组织运行之中。更多的精力需求投入到市场调研、竞争情报、互联网侦察活动中去,因为变化迅速而持续,竞争威胁可能会从任何地方、任何时间袭来,而造成巨大的伤害。
在大数据的消费者方面,公司在未来几年将会处理更多的内部生成的数据。然而在许多组织中,不同的部门像财务、工程、生产、市场、IT等之间的信息仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏壁垒和部门实际优势的前提下更透明地沟通的公司将更具竞争优势。
【解决方案】
数据管理对每个人来说都是一个挑战,但最大的挑战,是找到有经验且受过满足公司所需必要训练的人,尤其是在数据增长中。针对数据管理人员的高级教育和培训将会付出巨额的成本,即使现在看来是一种不必要的开销。
随着组织的发展,各部门之间的壁垒被打破,数据分析成为一项日益重要的业务流程,不可避免地就会有一段时间的数据显示需要做出重大改变。随着越来越多的决策来自于数据驱动的分析,对于人最艰难的事情之一,就是让机器做决定。不幸的是,决定可能是重要的,而机器可能是正确的。
【解决方案】
听从数据所告诉你的,并尝试尽可能明智地使用它。不要放弃你的直觉,而是要使用所有可用的信息做出发自内心的决定。否则,你的内心可能会背叛你。
与客户保持亲密人际关系的缺点之一,就是如何和那些气愤和不满意的客户保持亲密的人际关系。如今的时代,每个客户都有一大把的手段可以让全世界都知道他们有多不满意,而且他们乐于使用这种时代的力量。一个愤怒的客户可以给组织带来莫大的伤害。
【解决方案】
响应能力是客户服务一如既往的关键之所在,对于每一个心怀不满的客户,只要有正确的响应,都可以将其转换成品牌的拥护者。幸运的是,允许客户产生不满的同等机制,也或多或少的可以允许公司用来解决即时问题。响应越及时,对每个人都越有好处。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27