京公网安备 11010802034615号
经营许可证编号:京B2-20210330
营销大数据:盈利的秘诀
尽管我们现在拥有着比以前更多的有关消费者的有价值的数据,但只有12%的公司将这些大数据信息投入使用。大数据已经成了很热的词,但是许多营销专家和销售人员依然不知道如何去处理这些我们所能获得的信息。
与此同时那些使用了大数据的公司通常是以很杂乱的方式处理的:营销部门获得了数据但不知道如何利用,销售部门关注的始终都是些少量、具体的数据,所以面对如此庞杂的数据很容易信息过载。
因此两个部门合作共享信息,各取所利是很难的。
在我们分析那些销售部门和营销部门是如何利用大数据合作以帮助公司之前,让我们先来看看大多数公司事实上是怎么做的。
营销部门在不同系统内收集和管理数据,其中有一两个是有效的(通常是客户关系管理系统和网页分析系统)。销售部门关注消费者导流,但是没有时间分析数据。营销部门拥有大量难以利用的数据,销售部门并没有从营销部门得到足够有用的信息,能推动消费者引流。
事实是花些时间处理那些数据是大有好处的。现实表明,那些利用和分析大数据的公司要比他们的同行在生产率和盈利率上有5-6%的提高。尽管挖掘大数据是个巨大的时间投资,但这项工作可以减少营销和销售部门因走错方向而花费的精力,因此是可以增加最终利润的。
当销售部门和营销部门合作时,有趣的事情发生了。他们开始能更好地理解消费者行为,而这使得这两个团队能执行更好的营销活动以及目标更明确的销售行为。他们可以根据消费者是处于购买生命周期的哪个位置而制定针对性的整合营销方案。当然,这两个部门也可以协调一致增加更多销售额。
如果你的销售团队没有关注消费者的线上活动,那么显然浪费了很多时间。让我们举一个Stephanie的例子,她在一家公司工作,这家公司需要提供云计算的解决方案,而她是决策者。
一个典型的消费者在消费行为路径中会有以下三步:
触发步骤是指Stephanie所看到或听到的引起了她对解决方案的兴趣。为了帮助Stephanie进入这一阶段,营销部门可以给销售团队提供那些曾经引起其他消费者们关注云计算解决方案的有用信息。然后,销售团队可以通过社交网络分享那些信息(营销部门可以在更广的范围内作相同的事情)
触发步骤中有用信息举例:
一旦Stephanie被打动开始寻找解决方案,那么她就开始了调研这一步。如果你收集有关Stephanie的数据,你就会看到她已经点击了好几个有关云计算的广告并且访问了那些网站。她也在微博上搜索以寻求云软件的使用者喜好的建议。她浏览了一些小的商业博客甚至下载了一本名叫“如何为你的企业选择最好的云平台”的电子书。她已经喜欢上了你们软件公司的脸谱主页,并且分享了一些你们的内容。
营销部门之于销售团队来说可以做出的关键贡献在于帮助他们提供给Stephanie(以及喜欢Stephanie的人们)一些信息去引导她调查。
调研步骤中信息举例:
当她准备购买时,便开始了这一步。这个时候,Stephanie并未和任何销售人员交流便完成了消费者路径中的大部分内容。她在线上通过和同伴、分析者们沟通完成了大部分工作。当她准备去购买时,她还需要去证实或者否定她的想法即你们的解决方案对她而言是否合适。
营销部门之于销售团队可作出的关键贡献在于帮助他们了解到这个时候Stephanie可能在想些什么,并且为那样的对话做准备。
购买步骤中的信息举例:
营销部门拥有着关于消费者的数据—有的时候甚至比它所知的可处理的还要多。面对大数据,我们无须害怕。它仅仅是让我们学会处理信息,发现怎样的信息对营销活动是最有用的,又是怎样的信息对销售部门是最有帮助的。通过和销售部门的紧密合作,营销部门便能有效促进盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15