京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有没有人从数据的角度研究过艺术市场
比如从数据角度分析艺术品的合理定价,或者从交易数据来分析单个艺术品的价格走势,以及以数据来分析某个艺术家?
有的。我就一直在做相关领域的研究工作,我创立了一个叫做守望者的工作室,专门从事艺术市场的数据挖掘、分析工作,并提供相关领域的定制研究和咨询服务。
基于数据的艺术市场研究
我们的研究方法是:首先,收集艺术市场的原始数据,比如艺术家档案、展览新闻、拍卖结果等,然后在这些原数据的基础上,把它们合并到一个统一的数据库中,进行细致的数据清洗工作。通常这个步骤叫做数据沉淀。
接下来就是初步的分析。有了成交价格、作品尺寸、作者、创作年代这些基础信息后,第一块可以分析的就是价格数据。艺术品属于非同质品,因此你会马上发现国内以前通行的“平尺价格”这种方法是非常粗糙的。
为了解决这个问题,我们大约花费了3个月的研发时间,初步建立了一种回归分析法,也就是将面积、材质、主题、代表性等因素考虑进去,赋予一定的权重,计算出一个艺术家的“平均艺术品模型”(算法本身只横向对比艺术家本人的数据,因此这种回归分析不会导致艺术家彼此之间因为非同质化而产生的干扰),然后求出单个艺术品的成交均价。将每年的价格数据汇总后,形成类似这样的图表:
上图就是一个艺术家作品的价格趋势与市场整体走势对比分析图,由于目前2015年还未结束,所以图表中排除了2015年的数据避免干扰。
在这个领域,我们也抱着学习的态度。国内的雅昌艺术网有一个拍卖数据库,做的工作是类似的,在数据沉淀方面它们的工作做得非常全面。但由于雅昌主要是一个网络媒体,它们的工作重点聚焦于价格指数、天价艺术品排名、平均价格等具有眼球效应的指标分析上,我们则是对每个艺术家的价格以及导致价格的成因进行非常详细的深度分析。
国外也有著名的ArtPrice、ArtNet等网络平台,专门研究艺术品的价格进行定量分析,非常专业,它们只凭借价格数据这一点,就形成了会员制服务或定制报告服务来盈利。
更深入的分析
当然,作为专项做艺术市场研究的团队,我们不会止步于价格趋势的研究,因为这块所反映的只是交易的结果,而不是原因。在一些行业前辈的指导下,我们建立了重要的分析方法界面。比如,我们与有着多年市场交易经验的业内操盘者进行交流,建立了艺术市场的“多市场分析(Many Markets)”数据沉淀方法,在传统的一级市场数据(艺术展览、活动和出版物数据)与二级市场数据(主要是拍卖数据)基础上,我们进一步挖掘了所谓零级市场数据和三级市场数据。
其中,“零级市场”主要是指对艺术家档案数据的研究,从艺术家的成长经历中,剥离出最有价值的数据点,形成知识库。而第三级市场我们主要指的是博物馆、政府机构和非盈利组织的收藏和展览数据。
发现价值被低估的艺术家
之所以建立这样的分析模型,是因为艺术品创作通来自来艺术家本人的常年刻苦钻研,而艺术品最终会流向博物馆和非盈利性收藏。所以,我们将传统的一些定性分析法转化成定量分析工具,将具有类似属性的艺术家排列在一个界面上进行分析,就可以制作出具有“价值投资”思想的量表分析界面,找到那些具有“隐形价值”的艺术家,也就是其价值还没有充分体现在价格上面的、被市场低估的艺术家。
根据研究,我们发现艺术家的市场价值基本符合正态分布模型,类似上图,具有长期、持续的良好市场价值的艺术家品牌大约需要达到2sigma+水平,大约占艺术家整体数量的2.3%,其中具有天价效应的艺术家大约占总体的千分之一,因此,如果投资艺术品,采用随机投资的方法,从长期来看是具有较高风险的,这也是我们研究的一个具体价值体现点 —— 找到价值被低估的艺术家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15