
环境大数据从哪些方面推动环境管理
今年初,“互联网+”被写入政府工作报告,国务院又连续出台了《关于积极推进“互联网+”行动的指导意见》、《关于促进大数据发展的行动纲要》。近日,《中共中央关于制定国民经济和社会发展第十三个五年规划的建议》明确提出拓展网络经济空间,实施“互联网+”行动计划,发展物联网技术和应用,发展分享经济,促进互联网和经济社会融合发展。实施国家大数据战略,推进数据资源开放共享,由此,“互联网+”、大数据战略已经上升到国家战略。
那么,国家实施“互联网+”的本质是什么?环境大数据从哪些方面推动环境管理?
“互联网+”优化政府职能
互联网思维是一个多元概念。一般认为,互联网思维指在(移动)互联网、大数据、云计算等科技不断发展的背景下,对市场、对用户、对产品、对企业价值链乃至对整个商业生态进行重新审视的思考方式,本质是发散的非线性思维。互联网思维的特点,概括起来就是“民主、开放、平等”,用互联网思维可推动政府职能转型。
从政府层面来讲,大数据可以帮助政府实现三大价值:第一,透明的政府。大数据最核心的理念就是开放,这是大数据对于政府最核心的价值。第二,智慧的政府。大数据可以帮助政府更好地了解公众在想什么,需求什么。通过让政府变得更加智慧,从而提升执政水平。第三,负责任的政府。通过为社会公众提供更好的服务,真正做到“权为民所用,利为民所谋”,树立负责任的政府形象。
环境大数据不只是狭义的“数据集”
那么,什么是大数据呢?维基百科对大数据的定义为:“大数据意指一个超大、难以用现有常规的数据库管理技术和工具处理的数据集”。IDC(互联网数据中心)报告对大数据的定义为:大数据技术描述了一种新一代技术和构架,用于很经济的方式、高速的捕获、发现和分析技术,从各种超大规模的数据中提取价值。
环境大数据是大数据的一个重要组成部分,实际上表征了环境问题及其管理过程中各固有要素的数量、质量、分布、联系和规律等的数字、文字和图形等的总称;是经过加工的、能够被环境保护部门、公众及各类企业利用的数据,是人类在环境保护实践中认识环境和解决环境问题所必需的一种共享资源。它是一种与环境保护有关的非实体性、无形的资源,普遍存在于自然界、人类社会和人类思维之中。环境大数据具有无限性、多样性、灵活性、共享性和开发性的特征。另外,环境大数据具有信息量大、离散程度高、数据源广、各种数据处理方式不一致等特征。
在“互联网+”时代背景下,我们更倾向于广义的理解“环境大数据”,将其定义为“面向环境保护与管理决策的应用服务需要,以大数据技术为驱动的互联网+环境保护”技术体系与产业生态。这一广义的定义不再是狭义的环境相关“数据集”的概念,而是一种涉及到多元化采集、主题化汇聚和知识化应用的大数据治理体系。
环境大数据如何推动环境治理?
第一,促进精细化环境监测。说清环境质量现状及其变化趋势、说清污染源状况、说清潜在的环境风险是环境监测的根本任务。环境监测是环境管理的重要组成部分,是环境保护管理工作的基础。面对严峻的生态环境现状和环境问题出现的新趋势,我国的环境监测工作迫切需求环境信息获取手段从点上监测发展为点面相结合监测,手动监测发展为手动与自动结合监测、静态监测发展到静态动态结合监测、地面监测发展为天地一体化监测。
第二,提升污染防治工作效率。污染防治是环保部门的基本职能,也是环境保护工作的重点;污染减排是建设资源节约型、环境友好型社会的必然选择,是推进经济结构调整、转变增长方式的必由之路。环境大数据需要提供污染源排放空间分布、污染排放动向、污染排放趋势分析、污染排放特征等数据,为我国污染防治和污染减排工作提供重要的支撑作用。
第三,加强生态保护监管。环境保护工作需要收集生态监测和管理数据,不断强化生态数据资源的跨部门整合共享,对生态系统格局、生态系统质量、动植物种类、生态胁迫状况进行评价,全面、准确地了解生物多样性保护优先区的现状和动态变化情况,为严守生态红线提供支撑,实现生态环境保护的现状化管理。
第四,提供环境应急数据支撑。近年来,我国环境事故进入高发期,频发的突发性环境事件直接威胁人民群众的身体健康和财产安全。目前,亟待建立健全全国性的环境风险源数据库、应急资源数据库、危险化学品数据库、应急处理处置方法库;提供跨流域、跨区域、跨层级的应急数据资源共享;提供权威的决策支持服务,提供及时的气象、水文等信息资源,提供突发事件水和气模型推演运算结果等,为突发事件预防和处置提供大数据支撑。
第五,促进环境保护战略规划和决策。环境保护战略、规划与政策的制定和完善离不开对环境发展形势的准确研判,离不开对环境保护与社会经济之间互动耦合关系的深刻认识,离不开对产业布局与生态格局、区域资源环境承载能力之间协调性的准确把握。开展以上领域的研判和分析,需要依托丰富的数据资源开展数据挖掘、统计分析和模型测算,提供不同战略途径、规划方案和政策情景下环境保护的发展趋势模拟信息,为制定完善我国环境保护宏观决策提供信息支持。
第六,提高公众参与环境保护能力。随着我国经济发展,人民群众的环保意识越来越高,对生活环境质量提出了更高的要求。目前,我国公众对环境信息的来源主要为各级环保部门的外网网站和各科研院所的网站,公众参与程度不高。环境大数据应通过文字、图片、文档、视频、地图等信息,为不同层面的公众提供广泛的环境信息,提高公众环境意识,提高公众的环境参与能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17