
文 | 谢丽
在从学界(粒子物理学博士后研究员)进入业界(数据科学领域)时,Emily Thompson也曾有过犹疑。而现在,在担任Insight项目总监10个月之后,她对数据科学家有了自己独特的看法。近日,她在一篇文章中就当前人们对数据科学的误解谈了自己的看法,主要涉及数据科学家的职责、应用领域、工作环境、职业发展、技能集合等方面。。
误解一:“‘数据科学家’只是‘业务分析师’的一种花哨叫法,他们本质上是相同的”
在数据科学领域,业务分析师仍然占了很大一部分,而数据科学家也构建数据产品,创建软件平台,实现可视化和仪表板,开发前沿机器学习算法。“数据科学家”与“分析师”的最大差别可能是角色的独立性水平。传统的业务分析师需要别人给他们提供已经做过清理并打包好的数据供他们使用;而数据科学家必须是熟练的程序员,他们能够抽取、转换、加载数据,对其他团队的依赖较少。
误解二:“数据科学没什么用,我未必会进入广告行业,或成为一名股市分析员”
数据科学的应用领域同数据科学领域本身一样多样化。计量金融和广告是使用数据挖掘的两个相对传统的行业。医疗行业正在经历一场数据革命。可穿戴技术让收集、聚合、分析大量个人数据成为可能,从如何恰当地锻炼到睡眠如何影响情绪。多媒体是另一个数据科学的重大应用领域。比如,像News Corp.、The New York Times和Bloomberg等大型媒体公司都雇用数据科学家研究读者行为和读者保持;Netflix通过数据分析实现影片推荐;湾区创业公司 Samba TV借助机器学习技术实现内容推荐。
误解三:“我希望对世界产生积极的影响……为公司赚钱似乎与此存在利益冲突”
为营利公司工作与对人们的生活产生积极影响并不冲突。例如,Premise是一家实时经济数据跟踪平台。他们使用机器学习技术来发现一些不易发现的问题,比如,帮助发展银行将钱投资到有需要的邻国,Stitch Fix使用机器学习技术从库存商品中选择客户喜欢的衣服等等。
误解四:“在学术领域,我自己说的算,我喜欢这种自由。我不认自己适合公司结构的环境”
企业结构确实跟学术组织不同,但现如今,在以数据为中心的企业中,那种狂人风格也不是那么普遍。如果你是初创公司最初的成员之一,那么你还有机会影响公司的发展方向。而像Facebook和LinkedIn这样的大公司会分成若干较小的工作组,以保留初创公司的工作氛围。虽然可能会有团队负责人,但数据科学团队是高度协作的。而且,越来越多的公司实现了在家工作策略,数据科学家可以拥有“无限”假期。
误解五:“我觉得,如果不知道未来10年我的职业生涯是个什么样子,就贸然离开学术界,风险太大。要是我就职的公司跨了怎么办?”
不管在哪里,职业生涯都不是可以预测的。数据科学家在一家公司任职的时间平均为3到4年。数据科学家会留在有挑战的岗位上,但一段时间之后,会寻找新的挑战。好处是,数据科学领域有许多选择,而且正在不断发展,对数据科学家的需求很高。在任何一家公司任职,不管成功与否,都会获得宝贵的经验。在找第一份数据科学工作时,最看中的应该是一个可以从同事那里学得大量知识的协作环境。另一个需要关注的点是,在从学界进入业界时,要努力构建一个强大的关系网络(参加聚会、出席数据大会),它能为你提供建议和其他团队的内部信息。
误解六:“数据科学是泡沫”
有人认为,一旦数据分析实现自动化,数据科学家的角色就不存在了。但数据量正呈指数增长,没有任何迹象表明从数据中寻找答案的需求会慢下来。即使数据科学的某些部分可以自动化,但这个行业仍然需要数据科学家的技能。数据可能会很乱,无法应用恰当的工具或者无法了解所有相关的特性,这会产生有误导性的结果。而且,受过良好训练的数据科学家对数据有更好的理解,他们是大数据时代应对数据挑战的最佳人选。
误解七:“我担心自己不具备成为数据科学家的技能”
编码能力强很重要,但数据科学不全是软件工程。数据科学家集编码、统计分析和判断思维于一身。广受欢迎的硬技能、统计知识、编码能力是一名优秀数据科学家的基本工具。还有一项不容易明确定义的技能,就是博士研究员阶段所接受的良好训练。但是,要成为一名数据科学家,并一定要有物理、统计或计算机科学学位。June Andrews的研究显示,在LinkedIn从事数据科学工作的人所拥有的学位差别很大。数据科学本身就具有多学科的特点,而且一些公司开始使用领域专属的数据。因此,只要有量化思维,喜欢摆弄数据,对数据如何引导你提出和回答问题心存好奇,那么你就可以脱离学术界,进入数据科学领域。
来自InforQ
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15