京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文 | 谢丽
在从学界(粒子物理学博士后研究员)进入业界(数据科学领域)时,Emily Thompson也曾有过犹疑。而现在,在担任Insight项目总监10个月之后,她对数据科学家有了自己独特的看法。近日,她在一篇文章中就当前人们对数据科学的误解谈了自己的看法,主要涉及数据科学家的职责、应用领域、工作环境、职业发展、技能集合等方面。。
误解一:“‘数据科学家’只是‘业务分析师’的一种花哨叫法,他们本质上是相同的”
在数据科学领域,业务分析师仍然占了很大一部分,而数据科学家也构建数据产品,创建软件平台,实现可视化和仪表板,开发前沿机器学习算法。“数据科学家”与“分析师”的最大差别可能是角色的独立性水平。传统的业务分析师需要别人给他们提供已经做过清理并打包好的数据供他们使用;而数据科学家必须是熟练的程序员,他们能够抽取、转换、加载数据,对其他团队的依赖较少。
误解二:“数据科学没什么用,我未必会进入广告行业,或成为一名股市分析员”
数据科学的应用领域同数据科学领域本身一样多样化。计量金融和广告是使用数据挖掘的两个相对传统的行业。医疗行业正在经历一场数据革命。可穿戴技术让收集、聚合、分析大量个人数据成为可能,从如何恰当地锻炼到睡眠如何影响情绪。多媒体是另一个数据科学的重大应用领域。比如,像News Corp.、The New York Times和Bloomberg等大型媒体公司都雇用数据科学家研究读者行为和读者保持;Netflix通过数据分析实现影片推荐;湾区创业公司 Samba TV借助机器学习技术实现内容推荐。
误解三:“我希望对世界产生积极的影响……为公司赚钱似乎与此存在利益冲突”
为营利公司工作与对人们的生活产生积极影响并不冲突。例如,Premise是一家实时经济数据跟踪平台。他们使用机器学习技术来发现一些不易发现的问题,比如,帮助发展银行将钱投资到有需要的邻国,Stitch Fix使用机器学习技术从库存商品中选择客户喜欢的衣服等等。
误解四:“在学术领域,我自己说的算,我喜欢这种自由。我不认自己适合公司结构的环境”
企业结构确实跟学术组织不同,但现如今,在以数据为中心的企业中,那种狂人风格也不是那么普遍。如果你是初创公司最初的成员之一,那么你还有机会影响公司的发展方向。而像Facebook和LinkedIn这样的大公司会分成若干较小的工作组,以保留初创公司的工作氛围。虽然可能会有团队负责人,但数据科学团队是高度协作的。而且,越来越多的公司实现了在家工作策略,数据科学家可以拥有“无限”假期。
误解五:“我觉得,如果不知道未来10年我的职业生涯是个什么样子,就贸然离开学术界,风险太大。要是我就职的公司跨了怎么办?”
不管在哪里,职业生涯都不是可以预测的。数据科学家在一家公司任职的时间平均为3到4年。数据科学家会留在有挑战的岗位上,但一段时间之后,会寻找新的挑战。好处是,数据科学领域有许多选择,而且正在不断发展,对数据科学家的需求很高。在任何一家公司任职,不管成功与否,都会获得宝贵的经验。在找第一份数据科学工作时,最看中的应该是一个可以从同事那里学得大量知识的协作环境。另一个需要关注的点是,在从学界进入业界时,要努力构建一个强大的关系网络(参加聚会、出席数据大会),它能为你提供建议和其他团队的内部信息。
误解六:“数据科学是泡沫”
有人认为,一旦数据分析实现自动化,数据科学家的角色就不存在了。但数据量正呈指数增长,没有任何迹象表明从数据中寻找答案的需求会慢下来。即使数据科学的某些部分可以自动化,但这个行业仍然需要数据科学家的技能。数据可能会很乱,无法应用恰当的工具或者无法了解所有相关的特性,这会产生有误导性的结果。而且,受过良好训练的数据科学家对数据有更好的理解,他们是大数据时代应对数据挑战的最佳人选。
误解七:“我担心自己不具备成为数据科学家的技能”
编码能力强很重要,但数据科学不全是软件工程。数据科学家集编码、统计分析和判断思维于一身。广受欢迎的硬技能、统计知识、编码能力是一名优秀数据科学家的基本工具。还有一项不容易明确定义的技能,就是博士研究员阶段所接受的良好训练。但是,要成为一名数据科学家,并一定要有物理、统计或计算机科学学位。June Andrews的研究显示,在LinkedIn从事数据科学工作的人所拥有的学位差别很大。数据科学本身就具有多学科的特点,而且一些公司开始使用领域专属的数据。因此,只要有量化思维,喜欢摆弄数据,对数据如何引导你提出和回答问题心存好奇,那么你就可以脱离学术界,进入数据科学领域。
来自InforQ
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27