
O2O时代下的大数据生意:颠覆了谁
近两年,伴随着移动互联网兴盛,几乎所有互联网人都意识到一个变革的时代即将来临。人类在面对变革的来临,既兴奋又恐惧,这份恐惧源自其对未来的陌生,对自身控制力的怀疑。于是当下市场催生出了各种新概念来描绘未来场景。但浩子认为这些新概念大多也只是基于原有PC场景的总结升级,不具有颠覆性的意义。因为既然是变革,虽然未来如何不可预测,然其逻辑应该是重构和全新的。这些概念会是什么浩子不知道,而如果说未来的概念预测有一个支点,那就是基于技术基础的逻辑推理,原有的各种成型场景都应该被清零。
首先来谈谈基础性的概念:O2O和大数据。O2O是将线上数据与线下行为打通实现交流的概念。大数据则是建立在大量互联网基础上的数据收集,挖掘,从而为各项决策,服务,功能提供支持。也就是在移动互联时代,通过O2O这个手段实现真正的数据交互,从而形成以大数据为基础的各项产品和服务。之所以是“大”数据,是因为不再用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法 ;数据类型将更多的以用户为基础形成的各项数据模块。
正如KK所言(浩子不是KK的信徒,只是偶然瞄到他的一句话而已),移动互联时代将进入一个“数据生意”的时代。所有的互联网盈利模式也都将围绕着大数据展开,这将有别与PC时代的流量为核心。如果说安卓或微信是做生态层面的产品,那大数据就是这些生态里的基础产品。犹如现实生态里的农作物,矿产。大数据矿藏不是通过几千年的物理进化形成,而是通过对线下各种行为的数据化收集生成。而移动互联时代更多创业者们要做的产品就是播种机、收割机、挖掘机、厨房,来料加工等等各产业链上的业务。
基于以上数据生意的基础,我们来简单谈谈几个将会被颠覆的互联网基础概念。
平台:移动互联时代将摆脱以引流为目的的平台概念,取而代之的是基于数据集成的平台,也就是以数据为核心形成的产业链模式。比如大庆发现了油田,在大庆周边即会形成以石油为核心的产业平台。有石油机械产业,石油加工产业,还有以满足石油工人生活的超市,餐厅。
产品的客户体验:O2O是进入移动互联时代的必经之路,所以移动互联时代的客户体验不仅仅是一个APP或公众号的手机操作界面,流程等概念,线下操作是否友善,是否够2(即与线上系统的对接)将成为客户体验的重点。
流量为王:这个在PC时代创造出来的核心概念将被完全颠覆,取而代之的将会是大数据。一个平台的数据收集能力,处理能力成为胜败的关键。一个平台的数据将会具有磁场效应,数据越大其吸引力就越强。当然引流功能也将长期存在,只是其所处的核心地位将会被大数据取代。
估值:PC时代基于点击率,流量的产品估值方式将会随着流量的核心地位被颠覆而改变。产品的数据收集沉淀能力,数据挖掘能力会成为产品估值的主要依据。
盈利模式:大数据的交易形式将会趋于多样化,不是简单的出卖泄露隐私数据,而是基于平台的数据资源的各种应用挖掘开发。平台将各种类型数据进行分类管理,制作各种管道输出接口,根据下游开发商需求给予各种类型接口。如果平台的数据资源是一个矿藏,就会有各种类型的挖掘机和加工企业为取得自己所需数据付费,而加工企业也会将其数据产品卖给要求更加精细的企业。从而形成庞大的产业链。基于以上设想,层级越高的企业所获得的利润也越高。
既然是颠覆,将会是系统性的,这里只是选用几个比较基础的概念进行阐述。当然以上理解只是浩子基于对现有技术及个人实践,通过逻辑推理得出的预测设想,移动互联技术日新月异,千变万化,特别是线下人的接受改造程度存在太多变数,也可能以上阐述只是扯淡,仅供读者参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17