
O2O时代下的大数据生意:颠覆了谁
近两年,伴随着移动互联网兴盛,几乎所有互联网人都意识到一个变革的时代即将来临。人类在面对变革的来临,既兴奋又恐惧,这份恐惧源自其对未来的陌生,对自身控制力的怀疑。于是当下市场催生出了各种新概念来描绘未来场景。但浩子认为这些新概念大多也只是基于原有PC场景的总结升级,不具有颠覆性的意义。因为既然是变革,虽然未来如何不可预测,然其逻辑应该是重构和全新的。这些概念会是什么浩子不知道,而如果说未来的概念预测有一个支点,那就是基于技术基础的逻辑推理,原有的各种成型场景都应该被清零。
首先来谈谈基础性的概念:O2O和大数据。O2O是将线上数据与线下行为打通实现交流的概念。大数据则是建立在大量互联网基础上的数据收集,挖掘,从而为各项决策,服务,功能提供支持。也就是在移动互联时代,通过O2O这个手段实现真正的数据交互,从而形成以大数据为基础的各项产品和服务。之所以是“大”数据,是因为不再用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法 ;数据类型将更多的以用户为基础形成的各项数据模块。
正如KK所言(浩子不是KK的信徒,只是偶然瞄到他的一句话而已),移动互联时代将进入一个“数据生意”的时代。所有的互联网盈利模式也都将围绕着大数据展开,这将有别与PC时代的流量为核心。如果说安卓或微信是做生态层面的产品,那大数据就是这些生态里的基础产品。犹如现实生态里的农作物,矿产。大数据矿藏不是通过几千年的物理进化形成,而是通过对线下各种行为的数据化收集生成。而移动互联时代更多创业者们要做的产品就是播种机、收割机、挖掘机、厨房,来料加工等等各产业链上的业务。
基于以上数据生意的基础,我们来简单谈谈几个将会被颠覆的互联网基础概念。
平台:移动互联时代将摆脱以引流为目的的平台概念,取而代之的是基于数据集成的平台,也就是以数据为核心形成的产业链模式。比如大庆发现了油田,在大庆周边即会形成以石油为核心的产业平台。有石油机械产业,石油加工产业,还有以满足石油工人生活的超市,餐厅。
产品的客户体验:O2O是进入移动互联时代的必经之路,所以移动互联时代的客户体验不仅仅是一个APP或公众号的手机操作界面,流程等概念,线下操作是否友善,是否够2(即与线上系统的对接)将成为客户体验的重点。
流量为王:这个在PC时代创造出来的核心概念将被完全颠覆,取而代之的将会是大数据。一个平台的数据收集能力,处理能力成为胜败的关键。一个平台的数据将会具有磁场效应,数据越大其吸引力就越强。当然引流功能也将长期存在,只是其所处的核心地位将会被大数据取代。
估值:PC时代基于点击率,流量的产品估值方式将会随着流量的核心地位被颠覆而改变。产品的数据收集沉淀能力,数据挖掘能力会成为产品估值的主要依据。
盈利模式:大数据的交易形式将会趋于多样化,不是简单的出卖泄露隐私数据,而是基于平台的数据资源的各种应用挖掘开发。平台将各种类型数据进行分类管理,制作各种管道输出接口,根据下游开发商需求给予各种类型接口。如果平台的数据资源是一个矿藏,就会有各种类型的挖掘机和加工企业为取得自己所需数据付费,而加工企业也会将其数据产品卖给要求更加精细的企业。从而形成庞大的产业链。基于以上设想,层级越高的企业所获得的利润也越高。
既然是颠覆,将会是系统性的,这里只是选用几个比较基础的概念进行阐述。当然以上理解只是浩子基于对现有技术及个人实践,通过逻辑推理得出的预测设想,移动互联技术日新月异,千变万化,特别是线下人的接受改造程度存在太多变数,也可能以上阐述只是扯淡,仅供读者参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07