
2015中国大数据营销发展报告
在信息化加速发展的时代了,我们身边的一切正浩浩荡荡地发生着变化,人们的一切生活都开始和互联网挂钩,企业的营销也随之进行着调整。然而在这个时代,企业的营销面临着诸多挑战:一是消费群体难以定位,社会逐渐从大众消费转变为到圈层经济,已经不是一个品牌广撒网地播放广告使得其家喻户晓从而促进营销,企业如何精准捕捉自己的消费群体,显得颇有难度;二是竞争压力的逐渐加大,成本的控制更为重要,营销投入不能削减同时还必须达到超额的营销回报;三是未来变幻莫测,不容易把握企业发展方向,企业在决策上容错率大大降低。
在大数据时代,营销越来越被数据驱动。大数据让广告投放更加精准;大数据让企业能更快的听到消费者的声音并进行相应的产品和服务改善。企业如同一个精巧的生物体,大数据和科技让企业的神经系统更加进化,更敏锐的感知和更智慧的行动,不仅让企业更好地存活,更可以合理调度社会资源避免了浪费。
2015年8月,第一财经、明略数据以及秒针系统合作进行了大数据营销应用的调查。共有以下4个问题答案的重大发现:
大数据营销包括的哪些应用?
大数据营销在中国的应用现状如何?
企业所需的大数据来源在哪里?
企业如何开始应用大数据营销?
大数据营销会有哪些应用领域?
我们平时都有这样一个生活体验:在百度搜索了“胃疼”,或者在某电商网站上浏览了婴儿用品,随后一段时间内,你再用这台设备上网时,会发现有些浏览的页面里有百度广告联盟推送的胃药广告,在那家电商网站上会有“猜你喜欢”模块向你推送婴儿玩具或图书。
我们在线上订餐、购物、搜索、浏览,在线下观影、刷卡、乘车,每一个行为,都是一条数据,他们大多都可以被存储下来。在互联网时代,数据爆发式增长,获取数据的途径越来越丰富,门槛也越来越低。上面的例子,其实就是大数据指导营销的一种应用。
大数据营销包含多种应用,包括目前热门的精准广告投放、程序化购买、广告监测、广告创意优化、客户关系管理(CRM)、线上线下销售、风险控制、研究与洞察、用户画像、企业内部管理、新产品研发等等领域。每一个细分领域,在整个品牌主到消费者的产业链中,都有其极具潜力的作用。
目前精准广告投放是应用最广泛领域,有76%的受访企业已经在应用。其他应用较广泛的领域包括研究与洞察、客户画像、以及广告监测。
而在未来,受访者认为大数据营销非常有前景的领域拓展到营销的方方面面。总体来说,大数据营销最有价值的前五个方面是:精准广告投放、研究与洞察、在线销售、客户关系管理以及广告监测。
研究与洞察是企业的眼睛与耳朵,帮助企业了解消费者、制定正确的决策以及总结各项营销活动的效果。传统的研究与洞察更多的依赖于抽样调查的小数据。大数据相对抽样数据来说更丰富、更敏捷。大数据在研究洞察中的应用不仅仅是替代关系,而是为企业提供一种程序化的洞察。这意味着自动高速的洞察、与流程整合的洞察以及提供非常细节可行动的方案。
大数据在线销售上能够有丰富的想象空间。比如,电商积累了消费者的产品购买经验,就可以做出一个预判,提前告诉消费者需要买什么。基于个体层面的,对每一个人所需要购买商品的预判,就是一个大数据在营销上的应用。
大数据在营销上的应用还有大量可开发的领域,这些领域将会更多的以人们日常生活的习惯为导向(消费者利益)、以品牌主更好地售卖与服务于消费者为导向(企业利益)、以政府提高监管水平为导向(政府利益)进行开发,将三方的需求综合起来,每一方都照顾到,最终逐渐实现社会生产效率的提升。
大数据营销在中国企业的应用现状如何?
有数据显示,2014年美国市场在大数据营销的各领域总计投资160亿美元,预计2015年会投资达到200亿美元。中国市场在2014年投资不到200亿人民币。本次调研中,大部分受访者认为,大数据在营销上的应用还处在早期发展阶段。
对于中国企业而言,超过半数公司高度重视大数据营销但还没有明确战略。中国市场在大数据营销上的应用,还在探索阶段。
究其原因,可能与大数据营销还处于初级阶段有关。过往的营销方法和流程已经经过数十年的优化与沉淀。而大数据还完全是新鲜事物,无穷的潜力,但应用路线和方法并不明确。
目前大数据在营销上的应用处于初级阶段的原因主要有两个。第一是企业本身实力不足,像沃尔玛这样除了自产数据又收购大量数据分析型公司的品牌主少之又少,大多数品牌主并没有这么大财力物力去投入到自己不太擅长的领域,因此大数据在营销上的应用开发主要来自于第三方数据公司,而这类公司在近年来大数据背景下才逐渐浮出水面走向公众视野。第二是国内大数据产业链还不够成熟。比如BAT巨头里的阿里,将大数据服务的整个产业链都包下来做,并且不愿意跟整个行业共享自己的数据,这对品牌主是一个便利,但是这种数据与服务垄断会制约产业链里的其他创新型公司发展。
受访者所在公司将大数据营销落地面临的主要困难是数据源不充分,占比为76%。其次还有缺少大数据营销的精准需求,无法形成有效的落地方案,占比为62%。数据源不可控也是超过半数受访者公司目前面临的问题。
在大数据指导营销的大背景之下,很多公司为了更好地运用这个营销工具,纷纷作出了调整与改变。受访者所在公司接近半数建立的单独的大数据部门,另外有38%将大数据营销部分交予营销部采购。
在大数据时代,营销越来越被数据驱动。大数据让广告投放更加精准;大数据让企业能更快的听到消费者的声音并进行相应的产品和服务改善。企业如同一个精巧的生物体,大数据和科技让企业的神经系统更加进化,更敏锐的感知和更智慧的行动,不仅让企业更好地存活,更可以合理调度社会资源避免了浪费。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04