
大数据时代,如何评价人才
问:目前,人才评价工作中存在的突出问题是什么?
答:人才评价工作非常重要,是人才发现、引进、培养、选拔、使用、激励的依据。传统上,对人才的评价是经验性评价,是对已有成果、已有资历作出的判断。
问题是,当今世界充满了不确定性、风险性和不可预测性。过多关注过去的人才评价模式有很多局限性,尤其不适合创新型人才引进评价,而且特别不适合海外年轻拔尖人才引进评价。因为,创新型人才是发展中的人才,需要的是面向未来的评价,是“加油站”式的评价,评价要能为他们的未来发展加油鼓劲。
问:大数据将给我们的人才评价工作带来怎样的改变?
答:人才评价的一个极为重要的作用是发现和甄别人才,基于此的人才评价要为人才使用和发展服务,要特别重视未来,而不是过去。而大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据浪潮,让人类在历史上第一次有机会用数据围绕一个东西形成完整的描述。凭借日益增强的数据分析能力,人类得以有效实现对未来的预测。大数据可以帮助人们提升人才评价的整体水平,解决人才评价面向未来的问题。
问:历史优秀的人才,不是更有可能取得更大成就吗?
答:这可不一定。很多人评上教授后,可能一生都一事无成,人不是一定会越变越聪明的。社会进步需要更加有潜能、更加能创新的人,而这些人绝对不是单凭学历、职称就能看出来的。
精确度提高
问:人们常说要慧眼识英才,大数据能替代伯乐的直觉吗?
答:正是因为掌握数据的不充分,才逼得我们不得不依靠直觉。历史发展到今天,人才更为丰富多样,伯乐的直觉已不能满足现实需要。丁肇中先生就说过,同行评不出来创新人才,因为他们都是用已有的知识来评价人才,而创新人才是要面向未来的,不是一个模子刻出来的。只有大数据才能解决这个问题。
考察一个人,要有足够的数据情报,这就是美国中情局的强项——对关键人物数据掌握得非常细致。他们会不择手段,挖掘全部数据。你从哪个医院出生,父母怎么样,几岁还在尿床,小学犯过什么错误,中学有什么劣迹,大学时谈了几次恋爱,做过什么股票,亲戚有没有贩毒……都在掌握之中。他们能从一个人高中时经常上树判断出他“个性叛逆”。这些正是我们在人才评价中欠缺的。
问:是不是可以这样理解,大数据带来的不仅是信息技术领域的革命,它正在改变着我们理解世界的方式?
答:是的。迎接大数据时代,需要形成“大数据思维”。大数据不仅是一种实用工具,而且是一种思维方法。美国的卫生防疫部门积累了多少年,人才、专业上都有绝对的优势,为什么干不过谷歌?因为谷歌不和你拼专业,它拼的是信息采集量和掌握量。
大数据时代,分析事物之间的联系,不再限于线性联系,而是特别重视事物的相关性。现在美国卫生防疫部门也在做出改变,效果明显。比如,他们会监控全纽约200多万人上班刷卡的数据,刷卡情况会直接汇总到应急中心,如果有一天10%的人没刷卡,他们就开始启动疫情分析工作。
问:我们从中能借鉴什么呢?
答:对人才信息的采集、利用要给予更多关注。我们现在的问题是,搜集一个“坏人”(罪犯或贪官)信息所下的功夫,远比搜集一个“好人”信息要多得多。如果我们肯像搜集“坏人”信息一样去搜集“人才”信息,人才评价问题就解决了。
全球化视野
问:大数据运用到人才评价,应从何处入手?
答:如何最快捷地让社会接受新的理念?要从技术上入手解决。比如,“花未来的钱”的观念,中国通过推广信用卡做到了。信用卡,不光是方便,更大功能在于刺激消费。我们这个世代崇尚存钱的国家,接受消费文化这么快,就是因为先从技术上入手了。
大数据时代的人才可以出现在世界任何一个角落,他可以为世界上任何一个公司效力,人才国际化将全方位开启,人才战争将比以往更为激烈。谁能尽早把大数据体系建立起来,谁就能在新一轮人才战争中占据主动地位。全国性大数据平台的建立,还将直接减少研发成本,少走弯路,缩短研发周期,促进科研人员迅速取得一些创新成果。
此外,针对违法犯罪分子,我们普遍采用了测谎仪,如果科研人员愿意用同样的技术下功夫,制造出一个潜能仪,恐怕什么样的人才都能评得准。
问:这么说,对数据量的占有将非常关键?
答:对。国际猎头能准确找到人才,就是因为占有了海量数据。我们没有大数据,就只能在不充分的情况下进行人才评价。大数据能够帮助人们解决这个问题,从理论上讲,凡是符合条件的人都可以进入评价视野,这就解决了“少数人从少数人中选人”的弊端和评价标准粗放简单的问题。
问:大数据思维和手段,对创新人才的发现与评价会有帮助吗?
答:大数据的相关性视角,将为发现和评价创新人才打开一个新的天地。创新成果的产生,大多数还是和兴趣有关系,不是跟他的任务有关系,和项目的关联性不如与兴趣的关联性。人类历史上,最具原创性的科学发现,都源于一些偶然性的因素,钨丝的发现、青霉素的发现、火药的发现……很多都是来自原定计划的失败,甚至是事故。
20世纪70年代,澳大利亚两个学者,认为在高酸度胃液下生活的幽门螺旋杆菌是导致胃病的原因。论文发表时,遭到同行嘲笑,大家认为高酸环境下细菌是生存不了的。后来,基于他们的研究,药厂开发出相关药物,他们才获得认可并获得诺贝尔生理学或医学奖。我相信,在大数据时代,这样的创新人才将迎来前所未有的光明未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04