
为了让用户更容易地找到需要的信息,可以对网站的信息架构和站内搜索进行分析和优化,而另一个能对用户起到很好引导作用的就是网站的导航功能,所以这篇文章主要分析用户对网站导航功能的使用情况,并在此基础上合理地优化网站的导航设计。
网站导航的最终目的就是帮助用户找到他们需要的信息,如果说得详细点,那么可以概括为下面3个用处:
1. 引导用户完成网站各内容页面间的跳转。这个是最常见的,全局导航、局部导航和辅助导航等都是为了引导用户浏览相关的页面;
2. 理清网站各内容与链接间的联系。即对网站整理内容的一个索引和理解,这个最常见的应用就是网站地图和内容索引表,展现了整个网站的目录信息,帮助用户快速找到相应的内容;
3. 定位用户在网站中所处的位置。这个在面包屑导航中得到了充分的体现,它帮助用户识别当前浏览的页面与网站整体内容间关系,及其与网站中其它内容的联系和区分。
通过分析用户使用网站导航功能的情况,可以来评估网站各导航功能设计上的优劣,这里主要从导航的利用率、实现度、有效性和符合度4个方面进行分析:
网站导航的利用率,即用户使用各类导航功能的情况。最直观的分析方法就是使用点击热图,具体可以参考我之前的文章——网站点击热图,也可以使用页面覆盖图(Overlay),Google Analytics上面默认提供了网站首页的Overlay:
从图中可以区分网站首页各区域导航功能的使用情况,包括顶部导航,侧边栏的各导航模块等。如果是独立的导航索引页面,我们可以查看这些页面的浏览次数(Pageviews)、访问量(Visits)等指标来分析它们被使用的情况。比如你通过点击我的博客顶部导航中的“网站地图”进入了分类导航索引页面,会看到该页面的URL地址为http://webdataanalysis.net/site-map/,我们可以在Google Analytics上面通过filter来查看该页面的访问情况:
通过比较各导航页面的这些指标我们可以分析得到用户对导航功能的整体使用情况以及各导航的使用比例或使用偏好。
我们需要知道当用户试图使用导航功能时,有多少用户真正点击导航中的链接或者有多少用户进行了下一步操作。所以这里可以分析各导航页面的点击转化率(CTR),即用户在导航页中的点击次数/导航页面被浏览的次数,其实上面页面覆盖图指直接给出了页面中每个可点击对象的点击转化率,你可以将它们汇总就是整个页面的点击转化率,也可以查看导航页面各链接的点击转化率。但Google Analytics上面无法提供一些子页面的覆盖图,只能选择其它的工具或者试图监控导航页面所有的点击事件。
另外一种分析导航功能实现度的方法就是通过离开率(Exit Rate)这个指标,如果一个用户进入了导航页面后直接离开了网站,那么导航的功能就没有实现(当然如果用户返回了上层页面或者回到首页,导航功能同样也没有实现,这些操作无法体现在Exit Rate)。比如我的博客的分类目录导航页面,该类页面的URL地址都会包含“/category/”,所以也可以在GA上面直接filter出来所有这类地址,我们看看这些页面的Exit Rate情况,如下图:
这里因为缺少导航页面Exit Rate的评判基准,所以我无法判断我的导航页面效果到底如何,有兴趣的朋友可以在下面的评论把你们的网站或博客导航页面的Exit Rate贴上来看看,大家交流比较下。
与网站的内容页面不同,导航页面的目标是让用户更快地找到想要的信息,我们不需要用户过久地停留在导航页,正如Google的口号:We may be the only people in the world who can say our goal is to have people leave our homepage as quickly as possible(让用户尽快离开自己的网站)。
所以对于导航页面而言,页面平均停留时间(Avg. Time on Page)越短,则该导航页的质量就越高(当然用户要有点击才行)。页面平均停留时间也是GA中分析页面的基本度量,上图也有显示。
或者称为导航的效果,用户在使用导航功能找到相应的页面后,是否对该页面提供的信息感兴趣,或者说这些是不是他们想找的信息。
假设用户在使用导航功能后找到了需要的信息或者完成了预期的任务,那么在行为可能表现为在使用导航后继续在网站停留了一段时间,或者用户最终到达了任务的成功页面或网站的目标页面(如用户完成注册、电子商务网站下单或购物成功等)。所以我们可以使用导航的后续停留时间、任务完成度、目标转化率这些分析度量来衡量导航的实现效果到底如何。
基于对以上4个方面的分析,我们可以对网站进行针对性的优化。
a) 提高有效导航的利用率,将用户最常用或效果最佳的导航放在最醒目的位置;
结合上面的分析,将那些利用率高,效果好的导航功能放到醒目的位置,让用户更方便地使用这些功能。
b) 去除无效导航或者无人使用的导航,精简网站设计;
导航功能并不是越多越好,只要提供够用、有效的导航就行,结合上面的利用率和实现度,将那些没人使用或点击转化较差的导航功能进行精简。
c) 提高导航描述与对应内容的关联度,不要误导用户,赢得用户的信任并保持用户对网站的兴趣;
不要试图去做标题党,如果一个导航页面拥有了较好的利用率和实现度,那么千万不要辜负用户的期望,为他们提供相符的高质量的内容,这样才能真正地留住用户。
d) 优化导航页面内容的组织和展示。
如果有效性不高,用户经常需要在导航页中逗留一段时间才能找到自己想要去的地方,那么也许导航页就失去了其最根本的价值。如何更好地展示导航的内容可能是一个复杂的问题,涉及信息设计、分类、排序等多方面,或者有些网站设计师能想出一些别出心裁的展示方式来吸引用户的眼球,这里直接上张图吧:
好了,我对网站导航的分析优化说完了。文章来源:CDA数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07