
实现商业突破的关键点 大数据
而这两年,随着微博、微信等社交平台商业化尝试的深入,及其结果的不尽如人意,大数据的利用成为了一个能否实现商业化实质突破的关键点。而这个点的关键又在于社交平台是否能做到对大数据的真正开放。
对于社交平台大数据开放,行业关注点现在主要在集中在两方面:其一是社交平台大数据究竟价值几何?其二,是基于这一大数据,平台方能给出怎样的的全面开放政策,以及这类政策的持续和稳定性又如何。
社交平台的数据价值
要了解社交平台大数据的价值,首先要搞清楚的是,开放平台合作伙伴们是如何利用这一大数据的。
化繁为简,我们将其概括为三步:首先是对平台所产生的庞大数据进行分析;然后,通过分析获得数据背后的用户诉求;最后,针对用户诉求进行个性化、精确化和智能化的信息推送和服务推广,并最终实现吸引用户点击、消费的目标。
举个简单例子,比如有用户在微博分享地理位置、景点等信息时,其广告模块就会快速精准的为其推荐相关的机票、酒店等信息。
而实现这一所有流程的起始点,就在于用户在社交网络上的生活化分享。而这也正是社交网络大数据的价值所在。
此外,企业通过社交大数据的分析和处理,还可以低成本的进行舆论监控,极大降低了企业品牌危机产生和扩散的可能。
社交平台的数据价值不言而喻。近日,新浪CTO许良杰在接受采访时就着重谈了大数据,并称“新浪微博作为社会化平台,最大的价值在于大数据”。
超5亿的用户群及每天产生各种信息便是新浪微博有价值的大数据。目前,其正基于此做多种商业化的尝试,但对这些尝试,业界评价似乎不是太高。
比如,包括粉丝通、Pagerank、淘宝广告等在内的基于大数据的产品尝试,皆一定程度上影响了用户体验,在利用数据的同时,产生了诸多垃圾数据,更降低了用户活跃度,对平台价值进行着侵蚀。
要知道,社交平台的数据价值指的并不单纯是用户数及用户信息等,而是基于其动态数据的挖掘、分析和以API接口的输出,及再利用。这需要诸多环节的协同与努力,而非平台方一家力所能及。
正如Facebook的工程总监Parikh所说:“大数据的意义在于真正对你的生意有内在的洞见。如果你不能好好利用自己收集到的数据,那你只是空有一堆数据而已,不叫大数据。”
开放尺度定成败
大数据的价值只是基础,要实现智能营销,一个重要层面还在于第三方能从多大程度上利用到这一数据进行挖掘。
而这也包含了两个层面,首先是API开放多样性,其次是数据的完整性。
在API开放方面,一直以来行业对开放平台期待最多的公司要数新浪。新浪初期也的确不负众望,给予了第三方开发者近百个API接口,可谓相当丰富。在2012年前后,通过这些接口,也密集涌现出了很多基于新浪微博大数据的创业公司,盛况空前。
然而这种基于开放而联姻的蜜月期还没来得及令人回味,新浪对于API开放的态度却在近期发生了转变。如在去年,新浪微博便关闭了其开放平台的私信接口,今年更是对开放平台接口做了进一步收紧(对当前授权应用只能读取授权该应用的当前用户微博,不能获取其他用户微博;同时,当前授权应用只能读取授权该应用的当前用户的关系,不能读取其他用户的关系。)。
而这种收窄的姿态,在阿里巴巴入股新浪微博之后,愈趋明显。
众多开发者表示,其多款应用的数据已被清空或者api接口被停用。现在新浪开放平台的每次更新也是删的多,增的少,而增加的功能也大多都是可有可无的。
开发作为当下互联网的一个趋势(百度、阿里巴巴、腾讯【简称BAT】三巨头都在谈开放),新浪微博反其道而行之,当然,新浪对API开放性的收缩,我们要承认其一些深层次的因素考量。比如之前私信端口的开放,就造成大量垃圾信息对用户的骚扰;以及与阿里联姻后,来自阿里方面的诉求和压力等。
与此相比,一直以来不声不响的腾讯微博倒在开放平台上做出了不少动静。比如,国内唱吧、啪啪,国外cooliris都选择了腾讯微博,甚至iOS7系统也首次开放ios-SDK给腾讯微博。
其次说到开放的完整性,所谓数据完整性就是当开发者请求某种数据时,开放平台是否对返回数据的数量有所限制。这点也最能反映出一个平台的真实开放程度。
以最基本的获取一个用户的”粉丝列表“为例,新浪,对于一般授权用户,最多只能获得5000个最新粉丝信息,而腾讯则没有任何的限制。
腾讯副总裁刘炽平曾在其内部讲话中曾提到:“关键路径要有用户价值,如果没有用户价值,这里放一个流量,那里放一个流量,价值不大。” 而这句话也正点明了大数据开放的本质应该是什么。
行业皆知,只有数据挖掘精准度在85%以上时,才具备实现精准营销的条件。如数据挖掘不够精准,就会直接影响到广告营销的投放效果。而数据不完整,数据挖掘的精准度只是空谈而已。
而数据完整开放的重要性,还不仅仅限于第三方开放者,对于社交平台本身,在提升用户体验方面也息息相关。
比如腾讯微博最近上线的微圈、微热点、微频道、微博管家等产品,就是通过数据挖掘技术,抽取用户阅读时间线中来自游戏、活动、第三方应用等营销和广告微博,并将其过滤,从而进一步减轻垃圾信息对于微博用户的骚扰,从而使用户更高效的获取优质微博信息,最终实现用户阅读体验的提升。
这种将大数据挖掘产品化的路子,应该说值得借鉴。因为一方面,它能比较充分的满足第三方开发者需求;更重要的是,这并不以影响用户端的产品体验为代价,实施得好的话,可形成一个良性闭环模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23