京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分析师必备的用数据讲故事的五个步骤
在数字时代初期,数据只是数学家与科学家们讨论的话题。而如今,不管任何领域,任何人,都逃脱不了对数据的讨论和研究。不光我们经常使用的在线服务依赖数据,我们本身也是产生我们生活各方面信息源源不断的数据来源。
无论是人体数据——由于可穿戴设备的兴起——我们在家的能耗,或个人财务相关的数据:我们都正产生着大量数据,而当前我们需找到方法去了解它对我们的意义。
个性化数据在企业间兴起一股收集客户信息并寻求价值带给客户的热浪。对设计师的挑战在于,如何找到方法以降低大量数据造成的复杂性,并赋予数据一个易于人类辨识的原型。
数据皆人人可用之。它向用户提供了有意义和易理解的切实可行方式。这就是设计与众不同之处的能量所在:通过可视化帮助人们在纷繁的数据世界中寻找方向,从而改进人们的生活。
数据可视化从200多年前基本饼图发明时的形成至今已走过漫长的历程。如今,由于数据大潮的到来和人们关于数据使用的讨论,一种新的设计语言正在兴起,它可以优美地将大数据中的繁杂简化成既美观又富有意义的可视化图形。
因此不管你是要将健康福祉、购物习惯还是在社论中将数据表示成何种形状,奥菲尤尔小组总结出以下在面对数据可视化挑战时应遵循的五条核心原则。
确保了解你工作的数据。这是理解数据至关重要的第一步。你需要对宏观的全局有所理解:为什么收集这些数据?公司对于这些数据赋予什么样的价值?用户是谁?如何能让数据作用最大化?深入理解这些问题,能为创造出既有意义又人性化的可视化信息,打下重要的基础。
好的数据可视化不仅仅是一张美丽的图片,它还能讲述一个任何人都能明白的故事。因此,至关重要的是,你首先需明确你想讲的故事,然后将数据作为一种润色故事的方式。
例如,我们最近帮助瑞典移动运营商“3”公司重新设计了之前经常让用户混淆的月度手机账单,使其以用户为中心便于用户使用。3公司希望设计出更为有效易用的话单,而不是继续呈现给用户难懂的一串号码。
好的数据可视化讲了一个大家都能看懂的故事。
我们工作的成果是一个“我的3”的APP应用,能让用户实时查看套餐情况,以知悉套餐余量。通过数据可视化,我们设计了漂亮新颖的交互方式让用户查看数据情况。同时也很好地展示了3公司的客户关系。
确保你使用数据是用于引导而非支配整个体验。用户在理解与学习并形成自己体验的过程中,数据应该扮演幕后角色。值得探索的是,如何在可视化数据中融入你的见解,使用户灵活的解读数据,对用户来说极具意义。毕竟,愉悦的体验才能使用户记住并反复使用。
数据可视化是用来告知用户,而非让用户接收不需要的过载信息。作用一名设计者,你的角色就是专注简单,将复杂或者零散的信息变得切实可行,易于理解,极具意义和更人性化的信息。记住,越简单,用户才能越明白。
试试在可视化中键入当前行为与你的理解。会让你的设计被广泛的用户群体接受。饼图被人们广泛使用的原因在于:人们理解它表达的含义。这是一种天生优雅的可视化设计,因它有更大的影响力,且能使人们一看即懂。
一种设计驱动的方法
好的数据可视化不仅仅是设计上的杰作,也是帮助人们去解读之前无法触及的内容的一种极具价值的工具,并使这些内容赋有意义和指导性。随着越来越多的公司开始意识到数据的潜在能量,在将一些不清晰的事变成能帮助人们的事物面前,设计将发挥更大的作用。其关键就在于采用用户第一,专注简单的设计驱动方法,创造永不停息的愉悦体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29