京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析项目需要慎重而有力的监管
分析团队的管理者们必须拿捏好指导数据科学家们完成工作,和给予他们能够有效完成工作所需要的空间之间的分寸。
Scotiabank,是一家总部位于多伦多的金融服务企业,企业内的数据科学家们不附属于任何特定的业务部门。相反,他们是一个独立的团队的一部分——正式的名称为决策科学团队——为银行内的所有部门提供高级分析。 但独立并不意味着脱离: Andrew Storey,银行的决策科学部门的副总裁, 他和其他管理者们都努力确保团队进行的数据分析项目,对于业务战略和运作是有实用价值的,而不是单纯的抽象练习。
在拉斯维加斯举行的2015 TDWI Executive Summit会议上,Storey说道,“仅仅因为我们能做某事并不意味着我们就必须这样做。” “我们真正需要做的是将自己扎根于业务中,支持他们正在进行的项目。在这样的一个团队内,你很容易脱离现实,所以我们必须保持务实。”
为了帮助优化市场活动,促销方案,产品定价,以及识别不同客户之间的财务关联,Storey希望他团队内的30位分析师在进行客户数据集和定价数据的预测分析,运行数据挖掘应用程序时,能够有创造性。事实上,促进创新文化是他管理一个成功的分析团队的核心原则。“我们应该努力寻找更好的做事方式,”他补充道,激励他的员工这样做也帮助他留住这些员工。
与此同时,Storey让Scotiabank的业务经理决定他的团队应该探索的领域,或者他与他们共同决定。分析结果需要嵌入到操作系统和流程中,预测模型“是完全无用的,如果我们不基于它而做出决定的话,”他说。
数据分析的解读
团队成员还必须能够向业务高管们解释他们所使用的分析技术和方法, 以获得他们对于结果的认同并使用这一结果。为了设法简化分析过程,Storey引导数据科学家摆脱重复建立预测模型。他鼓励他的团队使用其他行业的金融服务企业和公司的算法,只需调整使其适应银行的需求。
随着大数据分析项目不断扩大数据科学家的工作范围,以及他们分析的各类信息。类似Scotiabank这样的协调方法,在管理分析团队时,是很常见的,并且也变得越来重要,也更具挑战性。
调查结果显示,随着大数据分析项目变得更加普遍,管理分析团队也成为一个更大的挑战。例如, TechTarget的2015年度 IT优先项目的调查结果显示,全世界范围内2212名受访者中的25%,认为他们的企业正计划在今年开展大数据分析项目,位列计划软件项目前5位(参见图表)。与此同时,2014年6月接受咨询公司Gartner inc .调查的302名业务和IT专业人士中的40%则表示,他们的企业已经对大数据技术进行了投资,相较去年提高了30%;另外有33%的受访者计划在未来的24个月之内进行投资。
Mike Lampa,咨询公司Archipelago Information Strategies的总经理,认为协作和合议的方法在管理大数据分析工作时,是必须的。 “我认为正确的心态是你如何指导整个过程,而不是控制它。” Lampa警告说,如果优秀的数据科学家认为他们的工作被过度控制,很有可能对此感到反感,转而在其它地方寻找新的工作。他认为管理者应与他们的团队合作,将分析工作的重点放在有价值的项目上,在使用数据和审查分析模型时提供明确的指导方针,然后就放手。
分析师掌握主动权
Netflix公司就对自己的数据科学团队采取了此类管理方法。这家位于加州The Los Gatos的公司使用运行在Amazon Web服务云上的多种系统——包括Hadoop,Teradata公司的数据仓库,亚马逊的Redshift,和Simple Storage Service技术,存储多个PB 数据用于分析客户与其在线流媒体服务之间的互动。
Kurt Brown,Netflix公司数据平台的副总裁,在加州San Jose举行的Strata + Hadoop World 2015 conference上进行演讲,他认为,数据分析师们应该负责建立自己的查询,算法,和模型,他的目标是使他们能够在数据分析项目时做他们想做的,障碍越少越好。
Brown的平台经理与分析师互相协商,促进开发最佳方法,但他们对于开发工作不会设置障碍。有时会导致编码错误和数据问题,但是他认为,在Netflix这样的公司内,试图在分析系统中避免错误代码是“徒劳的”。事后,他的一位员工会查找需要清理的代码,然后将这个信息发送给对此错误负责的分析师,这样他们可以自行修复。 “这不应该是管理者的责任,” Brown说。“这必须是一个共同的责任”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22