京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国宏观经济统计迈向大数据2.0时代
大数据并不是单纯的海量数据,它更蕴含着一种计算和思维方式的转变。我们要通过对海量数据的交换、整合和分析,发现新的知识,创造新的价值,带来新的发现。
大数据比传统抽样调查的优势就在于,大数据是采集每个可以采集的数据点,用全面数据代替了抽样、片面、局部的数据。分析数据,就是为了从数字中寻找可能的规律。一个真实过硬的数据体系,更有益于科学决策,造福于社会。历史学家黄仁宇在《万历十五年》中有过一个著名论断:中国人不善于用数目字管理,对古币存世量的讨论,大多含糊其辞。
我国现行的《统计法》历经1996年和2009年两次修订。社会各方越来越重视分析比较各类数据。不过,现实表明,我们的宏观经济数据的统计工作仍有大力提升的空间。2013年全国31省区市的国内生产总值(GDP)之和约为63万亿,这个数据超出了全国GDP总量逾6.1万亿。事实上,像这样巨大的统计“误差”绝非个例。出现这类统计误差,原因不外乎两个,一是统计标准不一,比如未能有效厘清对特殊企业特殊行业的统计内容;二是统计中掺有政绩“水分”,这也是导致统计误差的重要原因。
在抽样分析时数据测量能力有限,而大数据能获得更加全面真实的数据,并且对宏观趋势给出快速预测。在大数据时代,数据已经能够自己说话,传统的科学统计模型已经过时,理论也可能被终结。
大数据的能量往往也超出我们的想象。在房地产价格统计上,银行的贷款信息及住建部门的网签数据能让房地产价格数据更真实可靠;在就业领域,搜索引擎大数据可以帮助监测预警失业率和劳动力市场供求状况;通过钢铁、有色金属、能源、水泥的贸易数据判断供需走势等等。这些不是异想天开,它们一旦落地,将大大提高宏观经济数据的精细化,提高决策的科学性。
正如国家统计局局长马建堂所说,“谁拥有了大数据,谁就占有了制高点。就政府而言,大数据必将成为宏观调控、国家治理、社会管理的信息基础”。他的话可谓高屋建瓴。今年全国两会就有人大代表提出,可以通过分析春节期间移动用户漫游情况,掌握人口的流动规模与迁徙规律,为交通管理、铁路运输、公共安全管理等提供决策参考。这是挖掘大数据价值的现实建议。
与不少发达国家已把大数据的开发应用提高到国家战略高度相比,我国的大数据管理还处萌芽状态。重定性、轻定量,重观点、轻数据的思维惯性,使得我们在数据收集、使用和管理上不太灵敏。
目前,虽然各方都为挖掘大数据开发了很多工具,但大数据的成熟应用还有很长一段时间。首先,数据杂乱,价值密度低,如何有效地收集数据信息仍没有成熟的方案。同时,数据的规模并不能决定一切,不论是哪种数据分析方式,都可能存在统计上的缺陷,不能说数据更大、更新、更快就没有问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10