
家电企业将成为未来最大的大数据企业
在过去10年中,科技和互联网领域出现了一股正在涌动的“暗流”,这股力量既是新科技的促成者,也是商业模式的改变者,它就是大数据。根据国际数据公司预测,数据世界已增至4.4亿万亿字节。如果将如此庞大的信息量存储在苹果平板电脑ipad中,叠加起来的ipad的厚度可达到地球至月球距离的2/3,这预示着我们已经进入了大数据时代。
提到大数据时代,就不得不提及IBM、惠普、Teradata、甲骨文等这些推动我们进入大数据时代的企业,他们利用大数据分析平台的优势资源率先开始掘金大数据市场,成为前互联网时代名副其实的大数据引领者,不过随着智能化的发展,这些引领者很可能为被颠覆的对象,而颠覆他们的颠覆者很可能来自引领工业4.0趋势的智能制造企业。
2015年,马云在贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会开幕式上就曾表示,未来的制造业不仅仅是会制造产品,未来的制造业制造出来的机器必须会思考,必须会说话,必须会交流,未来所有的制造业都将会成为互联网和大数据的终端企业。“未来的制造业要的不是石油,未来的制造业最大的能源是数据。”
换句话说,IBM、惠普等大数据企业未来的竞争对手最可能来自智能制造企业。正如马云所说,在智能化的发展趋势下,智能制造企业很可能催生第二类的大数据公司,他们依靠对智能终端数据、智能交易数据和智能研发制造数据的全流程管理,在未来有机会成为最大的大数据公司。在这方面,以长虹为代表的全产业链家电智能制造企业最被看好。
据了解,长虹的产品线覆盖了电视、冰箱、空调、洗衣机、智慧城市产品等,是产品线最长的家电企业之一。这一产业优势加上其对上游压缩机、传感器等家电核心部件以及下游服务的掌控,构成了长虹成为大数据企业的先天优势,也成为长虹转型大数据企业的基本框架:即“智能终端数据+智能交易数据+智能研发制造数据”。
据了解,眼下长虹正在围绕这一基本架构打造“智能化交易平台”、“智能化制造平台”以及“智能化研发平台”,通过交易、制造和研发这3个平台的打造,长虹能够在从客户到供应链,再到制造和服务的全链条上都实现数据化,为实现真正以“客户为中心”的运作模式提供可能,尤其是智能终端数据,可以直接洞察消费者的需求。
伴随智能战略的推进,长虹内部还设立支撑终端硬件智能化应用的强大“云服务中心”,通过智能终端“传感器”进行关联内容的大数据挖掘分析与处理和推送,构建起“用户-移动端-智能设备-云平台”端云一体的生态环,进而实现人与端、端与端、人与社会各内容服务的交互与协同,消费者借助长虹的大数据可以更好的获取个性化的定制服务。
不过,长虹的大数据梦还不仅仅是提供智能化的终端产品和实现企业自身运作的数据化,长虹还希望提供更多的大数据服务,成为一个“智能制造+数据服务”的公司。在这样的目标下,今年7月,长虹开始正式进军智慧社区领域,开启了智慧社区新模式。基于长虹IPP框架,即使是非长虹品牌的智能终端也可以接入智慧社区平台。目前,消费者在这一平台上可以正式体验智慧物业、智慧健康、智慧娱乐、智慧教育等服务。
其实,早在2013年,长虹就提出以“智能化、网络化、协同化”为重点的智能战略。在智能化方向,将强化现有终端产品的智能化;网络化方向,启动建立基于云计算的大数据产业链,与宽带资本合作设立四川虹云创业投资基金,与四川电信在三网融合、物联网、大数据、云计算等领域进行战略合作。
2013年6月,四川长虹还建立了公司云服务事业部,同年8月还与IBM、文思海辉技术有限公司和绵阳科创区管委会共同建设了大中华区首个大数据竞争力分析中心。在这一体系下,长虹还创建了一支大数据团队,建立了一套基于长虹全体系的用户标准,包含11个属性分类和584个标签维度,这是目前为止,没有一家终端企业能够做到的。
在业内专家看来,长虹对家电企业带来的不是冲击,而是一种经营理念的颠覆。与乐视、创维等新老同行相比,长虹大数据战略的野心显然要大得多。长虹基于大数据的全新商业模式意图在于吸纳其他企业之终端为我所用,数据创造价值,而不再是单一的卖产品,而是提供以人为核心的智能数据服务。这不仅是兴起的互联网企业不可比拟,也让其他家电企业鞭长莫及。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11