
家电企业将成为未来最大的大数据企业
在过去10年中,科技和互联网领域出现了一股正在涌动的“暗流”,这股力量既是新科技的促成者,也是商业模式的改变者,它就是大数据。根据国际数据公司预测,数据世界已增至4.4亿万亿字节。如果将如此庞大的信息量存储在苹果平板电脑ipad中,叠加起来的ipad的厚度可达到地球至月球距离的2/3,这预示着我们已经进入了大数据时代。
提到大数据时代,就不得不提及IBM、惠普、Teradata、甲骨文等这些推动我们进入大数据时代的企业,他们利用大数据分析平台的优势资源率先开始掘金大数据市场,成为前互联网时代名副其实的大数据引领者,不过随着智能化的发展,这些引领者很可能为被颠覆的对象,而颠覆他们的颠覆者很可能来自引领工业4.0趋势的智能制造企业。
2015年,马云在贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会开幕式上就曾表示,未来的制造业不仅仅是会制造产品,未来的制造业制造出来的机器必须会思考,必须会说话,必须会交流,未来所有的制造业都将会成为互联网和大数据的终端企业。“未来的制造业要的不是石油,未来的制造业最大的能源是数据。”
换句话说,IBM、惠普等大数据企业未来的竞争对手最可能来自智能制造企业。正如马云所说,在智能化的发展趋势下,智能制造企业很可能催生第二类的大数据公司,他们依靠对智能终端数据、智能交易数据和智能研发制造数据的全流程管理,在未来有机会成为最大的大数据公司。在这方面,以长虹为代表的全产业链家电智能制造企业最被看好。
据了解,长虹的产品线覆盖了电视、冰箱、空调、洗衣机、智慧城市产品等,是产品线最长的家电企业之一。这一产业优势加上其对上游压缩机、传感器等家电核心部件以及下游服务的掌控,构成了长虹成为大数据企业的先天优势,也成为长虹转型大数据企业的基本框架:即“智能终端数据+智能交易数据+智能研发制造数据”。
据了解,眼下长虹正在围绕这一基本架构打造“智能化交易平台”、“智能化制造平台”以及“智能化研发平台”,通过交易、制造和研发这3个平台的打造,长虹能够在从客户到供应链,再到制造和服务的全链条上都实现数据化,为实现真正以“客户为中心”的运作模式提供可能,尤其是智能终端数据,可以直接洞察消费者的需求。
伴随智能战略的推进,长虹内部还设立支撑终端硬件智能化应用的强大“云服务中心”,通过智能终端“传感器”进行关联内容的大数据挖掘分析与处理和推送,构建起“用户-移动端-智能设备-云平台”端云一体的生态环,进而实现人与端、端与端、人与社会各内容服务的交互与协同,消费者借助长虹的大数据可以更好的获取个性化的定制服务。
不过,长虹的大数据梦还不仅仅是提供智能化的终端产品和实现企业自身运作的数据化,长虹还希望提供更多的大数据服务,成为一个“智能制造+数据服务”的公司。在这样的目标下,今年7月,长虹开始正式进军智慧社区领域,开启了智慧社区新模式。基于长虹IPP框架,即使是非长虹品牌的智能终端也可以接入智慧社区平台。目前,消费者在这一平台上可以正式体验智慧物业、智慧健康、智慧娱乐、智慧教育等服务。
其实,早在2013年,长虹就提出以“智能化、网络化、协同化”为重点的智能战略。在智能化方向,将强化现有终端产品的智能化;网络化方向,启动建立基于云计算的大数据产业链,与宽带资本合作设立四川虹云创业投资基金,与四川电信在三网融合、物联网、大数据、云计算等领域进行战略合作。
2013年6月,四川长虹还建立了公司云服务事业部,同年8月还与IBM、文思海辉技术有限公司和绵阳科创区管委会共同建设了大中华区首个大数据竞争力分析中心。在这一体系下,长虹还创建了一支大数据团队,建立了一套基于长虹全体系的用户标准,包含11个属性分类和584个标签维度,这是目前为止,没有一家终端企业能够做到的。
在业内专家看来,长虹对家电企业带来的不是冲击,而是一种经营理念的颠覆。与乐视、创维等新老同行相比,长虹大数据战略的野心显然要大得多。长虹基于大数据的全新商业模式意图在于吸纳其他企业之终端为我所用,数据创造价值,而不再是单一的卖产品,而是提供以人为核心的智能数据服务。这不仅是兴起的互联网企业不可比拟,也让其他家电企业鞭长莫及。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23