
现在的App开发已经进入到了必须靠推广运营才能上位的时代,有用户不代表什么,有活跃度稍表欣慰,有留存率稍表欣慰,看到真金白银才会喜上眉梢,毕竟最近最火的是游戏应用,它们才是捞到钱的新晋金主,但是它们赚到钱都是有过程的,各位开发者从开发到运营过程中都应该一步一步过来,着重关心下面几个数据:
1. 真实用户数
虽然说用户不代表什么,但是获取用户是推广的第一步。这个阶段你需要做的是①让App在十几秒内抓住你的用户②通过应用市场下载③通过广告渠道④通过适合自己的推广渠道。
然后统计用户数,要注意的是,因为下载量、安装量这些数据都比较虚,不能真实反映用户是否已经被获取。所以大家都要看激活,这才是真正获取到了新的用户。另一个非常重要的数据,就是分渠道统计的激活量,这样可以知道哪个渠道是最有效果的。
2. 每周、每月活跃度
因为获得的用户数中有一部分以广告、预装的的形式进来的用户,并非主动进入的用户,这时候就要通过应用本身内涵、体验良好的新手教程、有噱头的设计、向热门的东西靠拢来吸引这些“偶然误闯”的用户,并及时记录用户转化率、新手引导过程流失情况,而活跃度应该记录好周活跃、15天活跃、月活跃度。
3. 日留存率、周留存率
有活跃度后你要考虑你的用户粘性,这时要以保住老客户优先,因为成本低很多,怎么保存呢?
1)先统计,日留存率、周留存率(有些应用是不需要每日启动的)、月留存率(曾经有游戏行业的行家指出,如果想成 为一款成功的游戏,1-Day Retention要达到40%, 7-Day Retention要达到 20%。)
2)区分你的App类型,比如游戏的首月留存率比社交高,工具的首月留存率又比游戏高
3)然后在这些用户流失之前想办法提高他们的积极性。
4. 盈利:收入—成本
目前国内开发者被证实可行的盈利方式包括应用内付费和依靠合作者的运营支付和广告平台这两种,前面3个环节做好了,基数大了,平均转化成本和回报率提高了,盈利就实现了。
关于收入,大家最耳熟能详的指标就是ARPU(平均每用户收入)值 。利润最简化的计算公式是:利润=收入-成本。收入如何计算? ARPU是一个和时间段相关的指标(通常讲的最多是每月的ARPU值),还不能完全和CAC(用户获取成本)对应,所以我们还要多看一 个指标:LTV(生命周期价值)。用户的生命周期是指一个用户从第一次启动应用,到最后一次启动应用之间的周期。LTV就是某个用户在生命周期内为该应用创造的收入总计,可以看成是一个长期累计的ARPU值。每个用户平均的LTV = 每月ARPU * 用户按月计的平均生命周期。LTV – CAC的差值,就可以视为该应用从每个用户身上获取的利润。
5. 后续传播指数
后续传播的一个典型媒介就是社交网络,如果产品自身足够好,有很好的口碑。从自传播到再次获取新用户,应用运营会形成了一个螺旋式上升的轨道。而那些优秀的应用就很好地利用了这个轨道,不断扩大自己的用户群体。
以K因子(K-factor)为衡量指标,K = (每个用户向他的朋友们发出的邀请的数量) * (接收到邀请的人转化为新用户的转化率)。假设平均每个用户会向20个朋友发出邀请,平均转化率为10%的话,K =20*10%=2。当K>1时,用户群就会象滚雪球一样增大;K<1的话,那么用户群到某个规模时就会停 止通过自传播增长。
最后,记住如果只看推广,不重视运营中的其它几个层次,任由用户自生自灭,那么应用的前景必定是暗淡的,所以不同阶段应该关心好每个阶段的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04