
大数据时代:大数据到大智慧的管控
在传统经济时代,数据是最低能级的东西,从数据、信息、知识到智慧慢慢变得越来越有价值,但在当今的大数据时代,数据却变得无比强大。大数据不仅推动了大知识、大智慧,还推动了大思维、大格局,正是有了大智慧才造就了大企业。因此,谁能捕获、分析、利用好数据,谁就能抢占先机,打赢这场无声无息的大数据战争。
企业的风险很多,主要有三个:法律风险、财务风险和管理风险。企业为了平稳有序地经营,实现数据管控目标,就应对数据管控进行战略设计。即站在战略的制高点上,从最顶层开始,明确企业经营发展目标,自上而下对数据管控进行一层一层的设计,使所有层次和子系统都围绕总目标展开,上下形成合力,达到预期的管控效果。
一个完善的数据管控架构应明确管控目标、清晰管控对象、明示管控措施、明确部门权责,对企业数据实行规范管理,并以IT技术为支撑、各种技术综合运用为保障,促使企业各项业务目标的实现,进而达到企业数据管控目标。因此,为了实现高效准确的企业数据管控目标,需要数据的分级管控,其流程自下而上,明确各自职责,将每一层级管控内容标准化、流程化、专业化、信息化,实行精细化管理。
1、端正态度,提升能力。企业通过各种形式的培训,解决不同业务部门之间对数据管控存在的沟通和理解上的歧义等问题,提高管理人员的业务能力以及数据管控水平。只有各层级管理人员的业务能力和管理水平全面提升,才能按照企业数据管控架构及流程高效开展工作,共同把好企业数据管控质量关。从资本结构合理性出发,研究盘活存量、股权管理和流动问题。
2、强化意识,营造氛围。对数据管控应建章立制,明确规定相关工作内容,明确各自职责、清晰工作规程,将各项工作进行精细化管理。从企业高层领导重视开始,强化各级管理人员及所有职能管理部门的管控意识。使企业数据管控有法可依、规范运行,形成上下同心、齐抓共管的良好管控氛围。只有明确了大数据管理的内涵和外延,才能更好地为企业定位并做出决策,才会在市场化国际化竞争中走到前列。
3、统一部署,分级管理。数据集中管理是保证数据管控体系正常运转的关键,在企业数据管控有效实践中,无一例外都有一支专门的、稳定的数据管控团队,负责企业内数据处理与管理。综合数据由管理部集中管理、统一出口,专业数据则由各职能部室专项负责、归口管理,各单位按要求提供相应数据资料,对本级数据质量负责。各单位对关联数据相互把关,协同发展,使数据管控既集中化又不乏专业性。
4、灵活处理,不断创新。已设计好的数据管控模式和工作流程并非就此一成不变,墨守成规可能会使数据管控效果衰减,对特殊事项应视情况具体分析灵活处理,以求取高效率高质量的数据管控效果。比如,对临时布置的数据调查,若各相关职能部室已有详实可用的资料就应直接利用,大可不必还按照逐级搜集报送流程处理,这能成倍提高数据管控效率,也彰显了数据管控特例处置活力。
5、系统控制,协同发展。企业数据管控涉及的业务管理、信息化、专项技术管理、应用分析等方面应协同发展,以便有效避免数据管控系统性风险及信息孤岛现象的发生。应通过加强统计分析有效扩展数据内涵,呈现数据管控成果,用数据说话,用数据解读企业发展,在企业管理中最大限度地发挥企业数据的作用,并为改进企业数据管控提供有力的借鉴。以产业为主,利用多层次资本市场来推动产业实业的发展。
6、制度建设,文化激励。管理人员必须不断成长,不断上升,不断进步,有为才有位。同时,加强现代企业制度建设,建设有活力的体制机制,实现资本有进有出,形成流动性;干部能上能下,提高管理能力;工资有高有低,用激励机制留住人才。
从数据到智慧的升华,不仅是经营视野的扩大,也是经营能力的提升。大数据管理也是企业未来发展的基础,并为企业决策和定位提供依据。通过对大数据分析,一方面推动企业管理的科学化精细化,提高企业竞争力;另一方面推动企业发展方式的改进,为企业持续稳健地发展奠定基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23