京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:大数据到大智慧的管控
在传统经济时代,数据是最低能级的东西,从数据、信息、知识到智慧慢慢变得越来越有价值,但在当今的大数据时代,数据却变得无比强大。大数据不仅推动了大知识、大智慧,还推动了大思维、大格局,正是有了大智慧才造就了大企业。因此,谁能捕获、分析、利用好数据,谁就能抢占先机,打赢这场无声无息的大数据战争。
企业的风险很多,主要有三个:法律风险、财务风险和管理风险。企业为了平稳有序地经营,实现数据管控目标,就应对数据管控进行战略设计。即站在战略的制高点上,从最顶层开始,明确企业经营发展目标,自上而下对数据管控进行一层一层的设计,使所有层次和子系统都围绕总目标展开,上下形成合力,达到预期的管控效果。
一个完善的数据管控架构应明确管控目标、清晰管控对象、明示管控措施、明确部门权责,对企业数据实行规范管理,并以IT技术为支撑、各种技术综合运用为保障,促使企业各项业务目标的实现,进而达到企业数据管控目标。因此,为了实现高效准确的企业数据管控目标,需要数据的分级管控,其流程自下而上,明确各自职责,将每一层级管控内容标准化、流程化、专业化、信息化,实行精细化管理。
1、端正态度,提升能力。企业通过各种形式的培训,解决不同业务部门之间对数据管控存在的沟通和理解上的歧义等问题,提高管理人员的业务能力以及数据管控水平。只有各层级管理人员的业务能力和管理水平全面提升,才能按照企业数据管控架构及流程高效开展工作,共同把好企业数据管控质量关。从资本结构合理性出发,研究盘活存量、股权管理和流动问题。
2、强化意识,营造氛围。对数据管控应建章立制,明确规定相关工作内容,明确各自职责、清晰工作规程,将各项工作进行精细化管理。从企业高层领导重视开始,强化各级管理人员及所有职能管理部门的管控意识。使企业数据管控有法可依、规范运行,形成上下同心、齐抓共管的良好管控氛围。只有明确了大数据管理的内涵和外延,才能更好地为企业定位并做出决策,才会在市场化国际化竞争中走到前列。
3、统一部署,分级管理。数据集中管理是保证数据管控体系正常运转的关键,在企业数据管控有效实践中,无一例外都有一支专门的、稳定的数据管控团队,负责企业内数据处理与管理。综合数据由管理部集中管理、统一出口,专业数据则由各职能部室专项负责、归口管理,各单位按要求提供相应数据资料,对本级数据质量负责。各单位对关联数据相互把关,协同发展,使数据管控既集中化又不乏专业性。
4、灵活处理,不断创新。已设计好的数据管控模式和工作流程并非就此一成不变,墨守成规可能会使数据管控效果衰减,对特殊事项应视情况具体分析灵活处理,以求取高效率高质量的数据管控效果。比如,对临时布置的数据调查,若各相关职能部室已有详实可用的资料就应直接利用,大可不必还按照逐级搜集报送流程处理,这能成倍提高数据管控效率,也彰显了数据管控特例处置活力。
5、系统控制,协同发展。企业数据管控涉及的业务管理、信息化、专项技术管理、应用分析等方面应协同发展,以便有效避免数据管控系统性风险及信息孤岛现象的发生。应通过加强统计分析有效扩展数据内涵,呈现数据管控成果,用数据说话,用数据解读企业发展,在企业管理中最大限度地发挥企业数据的作用,并为改进企业数据管控提供有力的借鉴。以产业为主,利用多层次资本市场来推动产业实业的发展。
6、制度建设,文化激励。管理人员必须不断成长,不断上升,不断进步,有为才有位。同时,加强现代企业制度建设,建设有活力的体制机制,实现资本有进有出,形成流动性;干部能上能下,提高管理能力;工资有高有低,用激励机制留住人才。
从数据到智慧的升华,不仅是经营视野的扩大,也是经营能力的提升。大数据管理也是企业未来发展的基础,并为企业决策和定位提供依据。通过对大数据分析,一方面推动企业管理的科学化精细化,提高企业竞争力;另一方面推动企业发展方式的改进,为企业持续稳健地发展奠定基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07