京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何面对“大数据”
面对大数据,必须拿出鲜明的态度。我们不能做一个事不关己的旁观者,至今没有关于大数据的相关规划甚至明确定义。当“大数据时代已经来临”的论调日渐喧嚣时,我们不能只进行概念炒作,使这一仍然朦胧的产业“未富先老”。
对于大数据的描述,没有比阿尔文·托夫勒更浪漫的了:大数据是“第三次浪潮”的华彩乐章。作为一名颇有成就的未来学家,早在上世纪80年代他就作出了这样的预言。然而,大数据真正凸显自身价值,却是在互联网大行其道以后,再准确一点说,也就是这两年,大数据才在全球范围内“火”了起来。
与智能手机、3D打印这些可以亲身体验的划时代产品相比,大数据显得虚无缥缈、难以捉摸,但从未来前景预测,大数据给这个世界带来的改变,或许会更大、更难以想象。
大数据的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,这些海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”,也就是Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值),关于大数据的定义才算眉清目楚,而最后一个“V”大数据在具体应用中实现怎样的价值,恰恰是决定其未来走向的关键。
在大数据发端的美国,一些大型企业已经在利用数据赚取利润。沃尔玛存储着数千家连锁店在65周内每一笔销售的详细记录,通过分析购买行为了解客户;eBay通过购买网页搜索的关键字,精确计算出每一个关键字为eBay带来的投资回报,五年内广告费用降低99%。在国内,一些互联网企业也在主动拥抱大数据,凡客诚品将自己定位为一家“数据公司”,专门成立了数据中心;百合网分析注册用户的年龄、地域、学历等数据,形成独有的商业模型。
那么,此情此景是否真的表明,大数据时代已经到来?这恐怕是一个过于乐观的判断。
目前涉及大数据的企业,多是在数据利用上单打独斗,而大数据时代到来的重要标志,应该是大批专业级“数据买卖商”的出现,以及围绕数据买卖形成的,贯穿于收集、整理、分析、应用整个流程的产业链条。
至少从目前来看,要从大数据这个藏量巨大的金矿中淘到金子,并没那么容易。但一个令人振奋的事实是,经过一些先行者的不懈探索,大数据这一“华彩乐章”正发出日益恢宏的回响。
IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,这些互联网巨头这么做的原因只有一个:唯有将海量数据进行有效处理和分析,才能向客户提供有价值的东西。在它们带动下,数据分析技术将日渐成熟,从而围绕大数据逐步形成一个极其庞大的新市场。
巧妇难为无米之炊,掘金大数据的首要一点,还是谁拥有更多、更有价值的数据。社交网络、移动互联网、信息化企业都是海量数据的制造者,脸谱公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大商业能量。
由此可见,在必然到来的大数据时代,有两种企业将在“大数据产业链”中处于重要地位,一是掌握海量有效数据的企业,一是有着强大数据分析能力的企业。
我们完全可以预测,在不久的将来,脸谱、腾讯等海量数据持有者要么自我延伸成为数据分析提供商,要么与IBM等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发时点到来之际,以令人惊讶的速度成长壮大。
实际上,大数据不只互联网企业在唱独角戏,制造、销售等各领域企业都将受到大数据深远影响,先知先觉者已主动融入其中,例如海尔就利用阿里巴巴的数据分析用户喜好,实现电器个性化定制。我们毫不怀疑,大数据将对现有商业思维进行新一轮颠覆,未来企业最为核心的竞争力,或许不是人才,不是商业模式,而是对大数据的掌控分析能力。
面对大数据,必须拿出鲜明的态度。当美国奥巴马政府已将其上升到国家战略时,我们不能做一个事不关己的旁观者,至今没有关于大数据的相关规划甚至明确定义。当“大数据时代已经来临”的论调日渐喧嚣时,我们不能故伎重演,大肆进行概念炒作,使这一仍然朦胧的产业“未富先老”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09