
传统零售商必须加快拥抱大数据时代
不久之前,传统零售商们还在竭尽全力,希望能够进军线上,而他们会这么想这么做,当然有充分的理由。互联网上,市场呈现爆炸成长的态势,传统零售企业当然不希望放过这样的机会。然而现在,则出现了有趣的一幕,即愈来愈多线上零售商开始反过来进军实体店面了,与那些传统的实体零售商相比,这些新玩家拥有一个前者并不具备的优势:大量关于自己消费者的数据。
哪怕到了现在,电子商务还在迅猛发展之中:2012年,线上销售额跃升16%,达到2250亿美元。不过,无论这个市场变到多大,看上去电子零售也不可能彻底替代实体店购物——即时满足,在地销售支持,甚至还有和朋友一同购物的愉悦等等,都是实体店显而易见的优势。
因此,在传统实体零售商拓展线上业务的同时,线上零售商则在做着相反的事情,这也就不难理解了。Gap(GPS)的线上业务Piperlime和之前纯粹的线上男装店Bonobos最近都在曼哈顿开设了第一批实体店面。
这些灵活的电子零售商锐气逼人,确实有那么一点独特的优势。他们可以收集和分析由交易而产生的大量数据,利用推特甚至是社交网站的评论来确定到底该在哪里开店,店里该卖些怎样的商品。他们可以获取海量的信息——常常都是即时的——并予以充分利用,这一点对于任何零售商都是至关重要的,可以帮助他们理解消费潮流,并采取相应的行动。
毋庸赘言,零售商获取数据,并利用分析技术来得出关于消费趋势和消费者习惯的重要结论,这方面成功的例子已经有很多,但是IBM最新的一次调查研究发现,大多数零售商事实上还有一点畏缩,没有真正充分拥抱大数据时代。调查发现,那些称从分析数据获得了竞争优势的零售商百分比有所降低,从2011年的66%降低到了2012年的63%。必须指出的是,那些真正能够有效利用分析结果的零售商可以更好地理解消费趋势,尤其是在进入新的市场,面对更多的消费者的时候,这是一种千真万确的优势。
可是,开设实体店,就意味着Piperlime和Bonobos这样的电商现在面临着若干挑战,而其中最重要者之一就是任何多渠道零售商都无法避免的:在所有渠道当中都提供一致的购物体验。
Jared The Galleria of Jewelry和Kay Jewelers的母公司Sterling Jewelers在线上和店面同时提供一致的品牌体验方面获得了值得注意的成功。作为整个数字销售渠道彻底检修计划的一部分,他们对Sterling商务网站的浏览和功能进行了优化,并推出了新的消费者特色服务,包括个人定制购物和在线客服交流等。这些投资获得了回报:在上个假期购物季节当中,他们的线上销售额较之2011年猛增了49%。
接受IBM调查的公司当中,大多数——57%——都说他们在研究数据开发路线图,但是只有15%说打算利用大数据。为什么那么多人裹足不前?答案是一些零售商依然有所怀疑。近三分之一受调查的零售商都只将大数据看作是“最近的时髦词”。与此同时,大约四分之一的零售商将大数据定义为“实时信息”,认为即时了解情况,加速决策速度对于零售行业是至关重要的。事实确实如此。
能够即时得知消费者口味、近期购物记录和位置等信息,零售商就可以和消费者建立更密切的,更值得信赖的关西,强化自己的品牌存在感,获得更高的忠诚度。
通过我和零售商打交道的经历,我确信他们对于整理和利用数据的挑战已经非常清楚地意识到了,他们也在寻找合作的机会。竞争对手中很多已经在寻求实现这些价值,这也就使得其他人愈来愈难以止步不前。
调查还发现,他们这么做,近半的原因都是希望更好了解消费者的行为。显然,零售企业是将收集和分析信息视作一种更好理解和预测消费者行为的途径。
从线上走向线下,让之前这些纯粹的电子商务玩家获得了另外一条收集信息,了解消费者真正需求的渠道。同时,这也是个机会,让他们可以更好地与日益挑剔的消费者建立重要的联系,为消费者提供他们真正想要的——量身定制的更好的服务。这一切的要义,难道不正在这里吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08